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More than fifty years ago, the Korteweg-de Vries equation was shown to describe not only solitary

surface waves on shallow water, but also nonlinear ion-acoustic waves. Because of the algorithmic

ease of using reductive perturbation theory, intensive research followed on a wide range of wave

types. Soon, the formalism was extended to nonplanar modes by introducing a stretching designed

to accommodate spherically and cylindrically symmetric ion-acoustic waves. Over the last two

decades many authors followed this approach, but almost all have ignored the severe restrictions in

parameter space imposed by the Ansatz. In addition, for other steps in the formalism, the justifica-

tion is often not spelled out, leading to effects that are physically undesirable or ambiguous. Hence,

there is a need to critically assess this approach to nonplanar modes and to use it with the utmost

care, respecting the restrictions on its validity. Only inward propagation may be meaningfully stud-

ied and respect for weak nonlinearities of at most 1/10 implies that one cannot get closer to the axis

or centre of symmetry than about 30 Debye lengths. Thus, one is in a regime where the modes are

quasi-planar and not particularly interesting. Most papers disregard these constraints and hence

reach questionable conclusions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954308]

I. INTRODUCTION

After it was shown more than half a century ago that the

Korteweg-de Vries (KdV) equation1 not only describes soli-

tary surface waves on shallow water, but also nonlinear ion-

acoustic waves,2 the research in this domain has been

intense. A great variety of plasma models and compositions

has thus been covered, as well as various extensions to other

members of the KdV family of nonlinear evolution equa-

tions. The relative success of reductive perturbation theory

in describing nonlinear wave problems lies in the algorithmic

ease of use, based on a separation of fast and slow timescales

and of linear and nonlinear effects. This ideally leads to a

balance between nonlinearity and dispersion, enabling the

emergence of stable solitary structures that propagate

unchanged. In addition to these solitary waves propagating

without change in their speed and shape, KdV solitons show

remarkable interaction properties, surviving overtaking of

slower by faster solitons almost unchanged, and having char-

acteristic relations between amplitude, width, and propaga-

tion speed.3

This explains the great attraction and the rapid and

ongoing expansion in the number of papers devoted to this

type of research. However, there are limitations and restric-

tions that have sometimes been overlooked. It is obvious that

reductive perturbation theory rests on two pillars: a proper

choice of the stretching used to rearrange the independent

variables and a suitable expansion of the dependent varia-

bles. However, rather than simply positing a stretching þ
expansion scheme as many authors routinely do, and check-

ing to lowest (linear) order in the expansion that all is well,

we need to remember and stress that it is the linear

dispersion properties which govern the choice of stretching.4

In principle, dispersion relations should therefore be deter-

mined first, before any stretching is chosen. Furthermore, the

stretching determines the form of the evolution equation

which one obtains.

Because of the success of KdV theory in studying non-

linear plane waves, it was natural that an attempt to extend

the formalism to nonplanar wave studies would follow. In an

initial pair of papers, Maxon and Viecelli5,6 introduced a

form of stretching which they applied to the study of spheri-

cally and cylindrically symmetric ion-acoustic waves,

respectively. Particularly over the last decade or so, these

were followed by a flood of papers using their approach,

whether actually citing their papers or not. In these, the

authors applied the technique to nonlinear waves in a variety

of multi-species plasmas having different properties.

It is important to note that there have been several ex-

perimental observations, initially by Hershkowitz7 and sub-

sequently, particularly, by Nakamura and co-workers, of

what are interpreted as cylindrical or spherical solitons.8–11

Here, we will use “soliton” as a shorthand for nonlinear, su-

personic waves which preserve their shape, possibly with

variations in amplitude, as they propagate. However, it must

be borne in mind that the experimental evidence for this im-

portant property is difficult to assess and not fully convinc-

ing. The same goes for the interpretation of other details of

the experiments in terms of the theoretical predictions of the

Maxon-Viecelli theory.5,6

Unfortunately, close scrutiny of the Maxon-Viecelli

approach indicates that it includes some steps which restrict

its validity to a very limited range of parameter values. This

aspect has inevitably been ignored in later papers, whether
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the authors cite the original papers or not. There are other

steps in the formalism, justification for which is often not

spelled out, which lead to effects that appear to be

unphysical.

In trying to understand the methodology of Maxon and

Viecelli, and hence also that of their followers, we were

struck by many assumptions and ambiguities, and illustrated

this on a selection of such references,12 including the original

papers by Maxon and Viecelli.5,6 None of the authors other

than Maxon and Viecelli even tried to justify their approach,

a majority do not even acknowledge the sources for this

stretching, obviously considering it as being on par with the

plane-wave stretching of Washimi and Taniuti,2 often also

without explicit reference to the originators. Almost all for-

get the severe restrictions mentioned by Maxon and Viecelli

on its validity.6,13,14 Even after our focus on ambiguities and

assumptions,12 the stream of submissions without proper jus-

tification and recognition of the resultant limitations imposed

by the stretching seems to continue unabated.

Hence, there is a need in this mini-tutorial to show and

prove in an unequivocal way that the Maxon-Viecelli

stretching is to be used with the utmost care and respect for

its domain of validity.

II. BASICS OF REDUCTIVE PERTURBATION THEORY

Our discussion will be based on the simplest archetypal

acoustic wave, the ion-acoustic wave in a plasma composed

of Boltzmann electrons and cold fluid singly charged ions,

which is the model used in the original papers.5,6 At the risk

of repeating well known knowledge, we note that the ion-

acoustic dispersion relation is15

x2

k2
¼ c2

ia

1þ k2k2
D

: (1)

Here, x and k refer to the (angular) frequency and wavenum-

ber of the linear harmonic wave, respectively, cia is the char-

acteristic ion-acoustic speed, and kD the (electron) Debye

length.15 For very long wavelengths, for which kkD ! 0, but

x=k is kept finite, the acoustic modes are found with con-

stant phase speed x=k ¼ cia, and they are thus dispersion-

less. For slightly shorter wavelengths, but still satisfying

kkD � 1, (1) can be approximated by

x ¼ kcia 1� 1

2
k2k2

D

� �
; (2)

where we have chosen the sign for a propagation velocity

þcia in the positive x-direction.4 This leads to the typical

phase argument for one-dimensional propagation

kx� xt ¼ k x� ciatð Þ þ
1

2
k3ciak

2
Dt; (3)

which in turns yields the ubiquitous KdV stretching2,4,16

n ¼ e1=2ðx� ciatÞ; s ¼ e3=2t: (4)

Taking, for example, the expansion of the electrostatic

potential as / ¼ e/1 þ e2/2 þ � � �, and going through the

motions, the relevant KdV equation is readily obtained,

A
@/1

@s
þ B/1

@/1

@n
þ C

@3/1

@n3
¼ 0: (5)

The first term gives the slow-time variation, the middle term

the nonlinear effect, and the last one the dispersion.

The coefficients A, B, and C are functions of the wave

characteristics and plasma compositional parameters, and

can be quite involved for more complicated plasma models,

but the difficulties are algebraic rather than analytical in na-

ture. From (5), it follows that, ignoring the slow time-

variation, nonlinearity is balanced by dispersion in KdV

structures.

Linearizing (5) for plane harmonic waves with phase

Kn� Xs yields X ¼ ðC=AÞK3, showing again the connection

to the linear dispersion relation. In other words, while the

stretching reflects the linear dispersion properties and the

slow time variation, the structure of the nonlinearity is a

child of the chosen expansion. As the literature abundantly

testifies, many variations on this theme can be investigated,

referring to other plasma compositions and/or classes of

(nonlinear) waves.

This is all well and good, but it only works in a straight-

forward way for one-dimensional propagation, in which all

variables are functions of only one space coordinate (and

time), so that one obtains in essence the nonlinear equiva-

lents of plane wave structures propagating in one direction,

rather than expanding or contracting spherical or cylindrical

waves. Clearly, it would be highly desirable to get away

from the ubiquitous plane wave structures and investigate

nonplanar waves.

III. LINEAR WAVES

As we have pointed out above, the linear wave under-

pins the choice of stretching that is often used to study the

nonlinear problem. For clarity, we shall briefly list the basic

equations for one-dimensional electrostatic waves in a

plasma with cold fluid protons and Boltzmann electrons,5 in

the usual ion acoustic normalized form12

@n

@t
þ 1

r�
@

@r
r�nuð Þ ¼ 0; (6)

@u

@t
þ u

@u

@r
þ @u
@r
¼ 0; (7)

1

r�
@

@r
r�
@u
@r

� �
þ n� exp uð Þ ¼ 0; (8)

with � ¼ 0; 1; 2 representing plane, cylindrically symmetric

and spherically symmetric waves, respectively. Here, n and u
refer to the ion density and fluid velocity, normalized to the

undisturbed ion (and electron) density n0 and the ion-acoustic

velocity cia ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, respectively, in terms of the electron

kinetic temperature Te and ion mass mi. Further, r and u are

the spatial coordinate and electrostatic potential, respectively,

normalized to the electron Debye length kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0Te=n0e2

p
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and to Te=e. This leaves time t normalized to the inverse of

the ion plasma frequency xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=e0mi

p
.

We note from (6)–(8) that, in principle, the nonplanar

geometry (� ¼ 1; 2) plays an explicit role in both the conti-

nuity equation and Poisson’s equation, but not in the equa-

tion of motion.

A. Some basic wave concepts

Let us return to some of the basic assumptions about the

plasma and possible plane or nonplanar modes. First of all,

the plasma is homogeneous and stationary in the undisturbed

conditions and the equations describing its motion are auton-

omous in time t, meaning that t only occurs implicitly,

through the dependent variables and their derivatives. This

immediately allows us to choose the origin of timekeeping

wherever we wish, as we see fit, and it also follows that after

linearization of the dependent variables around their undis-

turbed values, the basic equations can be Fourier analyzed

with respect to time in a useful way.

On the other hand, the basic equations are only autonomous

in the spatial coordinate(s) as long as we work in Cartesian ref-

erence frames, which is specifically the case for plane waves

propagating in a fixed direction. In a magnetized plasma, for

instance, this may relate to a plane wave propagating at a fixed

angle to a uniform magnetic field. However, whenever there are

powers or functions of a space coordinate multiplying functions

and derivatives of the dependent variables, a Fourier transform

will lead to a convolution integral,17 and this is not useful if one

wants to determine a dispersion relation.

This typically occurs when one investigates nonplanar

plasma modes in cylindrical or spherical coordinates, even

when angular effects are not considered because of cylindri-

cal or spherical symmetry with respect to an axis or a centre

of symmetry, respectively. In that case, r is the radial dis-

tance from the axis or from the centre and, even after linea-

rizing the dependent variables, there is no point in Fourier

analyzing with respect to r. Hence, all notions of obtaining a

linear dispersion relation of the standard form, Dðx; kÞ ¼ 0,

are lost, unless great care is taken to observe stringent limita-

tions on the radial domain, as discussed below.

B. Blindly using Fourier analysis

Let us see what happens if, despite the general com-

ments above, one decides to blindly carry out a Fourier anal-

ysis of (6)–(8). This approach has been discussed in our

earlier paper,12 and we recall some of those results that illus-

trate graphically what follows.

In the usual way, we substitute n ¼ 1þ enA exp

½iðkr � xtÞ�, u ¼ euA exp½iðkr � xtÞ�, and u ¼ euA exp

½iðkr � xtÞ�, for e small. Obviously, the amplitudes nA, uA,

and uA must be independent of the independent variables of

the original equations, r and t, as well as of k and x.

One then finds that the ion density satisfies

nA ¼
k2

x2
1� i�

kr

� �
uA; (9)

leading to the linear dispersion relation

x2

k2
¼ 1� i�

kr

� ��
1þ k2 1� i�

kr

� �� �
: (10)

Hence, V2 ¼ limk!0 ðx=kÞ2 should yield the linear acoustic

velocity to be used as the basis of the stretching.

For strictly plane waves, �¼ 0 simplifies the expression

(10) so that taking the limit k! 0 of x=k yields V¼ 1, and

one finds the familiar plane-wave stretchings.2

However, for nonplanar modes (� 6¼ 0), there is evidently

a major difficulty in (10), namely, the appropriate “acoustic

speed” is r-dependent. Hence, the harmonic linear wave

method, having assumed constant x and k, only works when

the imaginary terms i�=kr disappear. These terms are bother-

some not so much because they are imaginary, but because

the frequency is now found to be spatially varying for real k.

It might appear that a possible way out would be to assume

that the terms in �=kr are small enough so as to be able to

neglect them. However, computing limk!0ðx=kÞ would then

amount to requiring that r !1 faster than k ! 0. Thus, for

general radial positions r, one cannot find an acceptable value

for V, despite claims to the contrary.5,6,13,14

A part of this argument was already contained in our ear-

lier paper,12 which has been studiously ignored, except for a

recent paper by Shan and Rehman18 who effectively repeated

a part of our text, without taking account of the consequences

that follow, and in fact without proper reference initially.

Subsequently, this was partially rectified in an Erratum.19

We also note that for linear modes containing an extra

factor 1=r upfront, as for spherical electromagnetic waves,

the r-dependent imaginary terms in (10) are eliminated for

�¼ 2, but other equally serious r dependences appear.

Indeed, the result is then

x2

k2
¼ 1þ k2r2

k2r2 1þ k2ð Þ : (11)

Thus, however one approaches the problem, the assumed lin-

ear wave behaviour, the basis of any possible stretching, is

valid only for kr � 1, together with k� 1.

C. Aspects of the standard wave equation

It can easily be shown that, without some further

approximation, the basic fluid equations (6) and (7), coupled

by Poisson’s equation (8), do not lead to a wave equation of

standard form in nonplanar geometry. Nonetheless, let us

next remind ourselves of waves that can be described by a

wave equation in a single dependent variable v

r2v� 1

c2

@2v

@t2
¼ 0; (12)

with c as the characteristic propagation velocity.

In Cartesian coordinates, the solution of (12) is well

known to be

vðr; tÞ ¼ Fðk � r6xtÞ: (13)

Here, F is an arbitrary function of its phase argument

k � r6xt, k is the wave vector giving the direction of propa-

gation, and x ¼ kkkc is the (angular) frequency. Thus, the

060801-3 F. Verheest and M. A. Hellberg Phys. Plasmas 23, 060801 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  81.247.73.53 On: Wed, 22 Jun

2016 15:33:51



shape of the wave is arbitrary, and wave propagation occurs

at constant speed, c ¼ x=kkk, without a change in amplitude

or shape occurring.

For cylindrical or spherical waves, propagating in/out-

ward from the axis or centre of symmetry, the wave equation

becomes

1

r�
@

@r
r�
@v

@r

� �
� 1

c2

@2v

@t2
¼ 0: (14)

We can see immediately that, because of the factors r� , the

equation is no longer autonomous in r.

Fortunately, for spherical waves (v¼ 2), it can be trans-

formed into an autonomous equation in rv, using the prop-

erty that

1

r2

@

@r
r2 @v

@r

� �
¼ 1

r

@2

@r2
rvð Þ; (15)

and after subsequent multiplication by r one obtains

@2

@r2
rvð Þ � 1

c2

@2

@t2
rvð Þ ¼ 0: (16)

This yields the standard spherical wave solutions

v ¼ 1

r
F r6ctð Þ; (17)

well-known from electromagnetic theory,20 where v repre-

sents one of the components of the electric or magnetic

fields. Thus, a wave of arbitrary shape will expand or con-

tract radially at constant speed c. However, the amplitude

diminishes as 1=r due to conservation of total wave energy.

It follows that, subject to the caveat regarding the diminish-

ing amplitude, one can, for the spherically symmetric wave,

find a wave frame moving with constant speed, in which lin-

ear waves of arbitrary shape will propagate without a change

of shape.

Importantly, no analogous cylindrical wave solutions

can be found, when �¼ 1. In fact, as can be checked, shape-

preserving symmetric solutions can be obtained in n�
dimensional curvilinear coordinates only for the spherical

case, �¼ 2, albeit with a radially decreasing amplitude as

seen above. In any other number of dimensions, the shape of

an arbitrary wave is not preserved.21 Thus, it follows that, in

the case of cylindrically symmetric waves, it is not in general

possible to move to a wave frame moving with fixed speed

without some distortion occurring.

Specifically, it is well known that the radial part of the

solutions to the cylindrically symmetric wave equation is

given by Hankel functions of order zero,9,22,23 usually

denoted by H1
0ðkrÞ and H2

0ðkrÞ, respectively.

Fortunately, the cylindrically symmetric case can be

saved in the asymptotic limit kr � 1. In that limit, H1
0ðkrÞ

and H2
0ðkrÞ vary as r�1=2 expð6ikrÞ, respectively.22,23 Thus,

a harmonically varying solution (/ r�1=2 exp½iðxt6krÞ�) can

be obtained. Although one is restricted to harmonic waves

(which are, of course, of fundamental importance), at least

such waves will propagate at constant speed with constant

shape, albeit with a radially varying amplitude. Analogously

to the spherical case, a fore-factor (r�1=2 in this case) is

required to ensure that total wave energy is conserved as the

wave expands or contracts radially.

In summary then, solution of the cylindrically symmet-

ric wave equation allows one, only in the limit kr � 1, to

move to a wave frame within which harmonic waves propa-

gate with unchanged shape (constant wavelength), but with

radially varying amplitude. We must emphasize, however,

that this underlying assumption is not normally discussed in

the many papers in the standard literature on cylindrically

symmetric soliton propagation. We note that Refs. 6, 13, and

14, although not commenting on kr explicitly, do mention

that the approach is valid only for large r=kD.

D. Quasineutrality

Before proceeding to investigate a further fundamental

assumption, we emphasize again that, unfortunately, the ba-

sic fluid and Poisson’s equations in electrostatic plasma

problems cannot, in general, be reduced to a single wave

equation of the form given above in (14), but they remain

intrinsically non-autonomous, even after linearization of the

dependent variables.

An exception to this statement arises when one introdu-

ces the assumption of quasineutrality, that is, one ignores

Poisson’s equation and instead sets the ion density equal to

the electron density. It is well-known15 that this additional

physical assumption of ignoring the effects of charge density

fluctuations implies that one is restricted to considering

waves with wavelengths longer than the Debye length, spe-

cifically satisfying k2 � 1 (normalized to kD), as one may

see from (1). In that case, the basic equations (6)–(8) are

reduced to

@dn

@t
þ 1

r�
@

@r
r�duð Þ ¼ 0; (18)

@du

@t
þ @du

@r
¼ 0; (19)

dn� du ¼ 0: (20)

Taking the time derivative of (18) and eliminating @du=@t
with the help of (19) leads to the standard wave equation,

(14), for arbitrary �, with the dependent variable satisfying

either v ¼ du or dn and c¼ 1. Nakamura and Ogino10,11

state that dn satisfies an equation of this form for nonplanar

ion-acoustic solitons. However, they unfortunately do so

without providing any details on how their result is achieved

and specifically not drawing attention to the limitation

imposed.

Following (17) for spherical waves (�¼ 2), one can

show that

dn ¼ du ¼ 1

r
F r6tð Þ: (21)

Unfortunately, however, this is only partially helpful as one

can readily show that the expression for du is not of the same

form. The full problem of interest is, of course, actually
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nonlinear, and in the standard KdV expansion, one normally

finds that, to linear order, the independent variables satisfy

du ¼ dn ¼ jduj. Hence, this result, although useful at first

sight, turns out to be disappointingly restricted.

IV. RE-DERIVING THE EXTENDED KORTEWEG-DE
VRIES EQUATION

A. Evolution equation

In Sec. III B, strong indications emerged that one will

have to work at large r in order to salvage a form of reduc-

tive perturbation theory when investigating nonplanar waves.

Let us go back to the usual KdV equation (5), obtained using

the stretching (4) (now with normalized cia¼ 1). Its sech-

squared soliton solution is traditionally pictured as moving

slightly superacoustically from left to right. Because the ba-

sic equations in plane geometry are autonomous in x and t,
the origin of space and time can be chosen at will, as are the

orientations of the axes. Thus, a soliton which is in some x0

at t0 travels to x1 > x0 at t1 > t0 at speed 1þ w > 1. Hence,

for the co-moving coordinate, we obtain

x1 � x0 ¼ ð1þ wÞðt1 � t0Þ ) f ¼ n� ws; (22)

where n ¼ x� t, setting the bookkeeping parameter e ¼ 1

for the final evaluation.

In the nonplanar geometry we are discussing, the non-

planar modes will look more and more like plane waves, the

larger r becomes, and ideally so for r ! þ1. It thus makes

no sense to start with initial conditions at large r and let the

nonlinear structure move outward from the axis or origin of

symmetry, as it will merely lose any nonplanar characteris-

tics that it may have.

Therefore, we argue that one can only meaningfully

investigate waves propagating inward, towards the axis or

origin of symmetry. Obviously, the basic equations are now

nonautonomous in r, and by definition r � 0. In other words,

for inward propagation a solitary structure which is at posi-

tion r0 at time t0 moves to r1 < r0 at t1 > t0. Now we have

for the co-moving coordinate that

r1 � r0 þ ð1þ wÞðt1 � t0Þ ¼ 0 ) f ¼ nþ ws; (23)

provided the phase argument is chosen as n ¼ r þ t.
To see what the Maxon-Viecelli approach really

implies, we follow their stretching for the independent varia-

bles,5,6,13,14 in the form

n ¼ e1=2ðr þ tÞ; s ¼ e3=2t; (24)

coupled to the usual expansion of the dependent variables

n ¼ 1þ en1 þ e2n2 þ � � �;
u ¼ eu1 þ e2u2 þ � � �;
u ¼ eu1 þ e2u2 þ � � �:

(25)

Inserting (24) and (25) into (6)–(8) gives to lowest non-

zero order

@n1

@n
þ �

r
u1 þ

@u1

@n
¼ 0; (26)

@u1

@n
þ @u1

@n
¼ 0; (27)

n1 � u1 ¼ 0: (28)

A first remark here is that if r were of order unity, the middle

term in (26) would be of order e, lower than the two other

terms with derivatives which are of order e3=2. Hence, the

middle term would dominate and cannot be balanced, lead-

ing to u1 ¼ 0 and nothing remains. This means that 1=r has

to be at least of order e1=2, quantifying for the first time that

one has to work at fairly large distances from the symmetry

axis or origin.

Further, in (27), the two terms are of order e3=2, whereas

in (28) the two lowest-order terms are of order e, and correc-

tions in 1=r would appear only at higher order, even if 1=r
were of order unity. As a result, (28) reduces to a quasineu-

trality condition, n1 ¼ u1. It is of interest to note that this is

consistent with the requirements arising from the need to

derive a linear wave equation from the basic plasma equa-

tions, as we have discussed in Sec. III D.

This notwithstanding, retaining the middle term in (26),

with 1=r � e1=2, would lead to an analytical blockage, since

no workable analysis exists to then determine the first order

variables. The only way out is to restrict the treatment to

even larger distances, in the sense that �u1=r becomes of

order e5=2, and can thus be relegated to the continuity equa-

tion at that order. The consequence is that 1=r has to be of

order e3=2, a restriction mentioned already by Maxon and

Viecelli.6,13,14 However, they do not base this restriction on

the above argument. Instead, they point out that this ordering

is required so that the ingoing cylindrical solitons, which

travel towards increasing n, do not cross the singularity at

r¼ 0.6,13,14 It is not clear how these two arguments are

linked to one another. Importantly, this restriction on r is of-

ten ignored in the numerical applications in the literature,

particularly when authors allow for propagation too close to

the axis or origin, including values of r that are too small, as

will be seen below.

Unexpectedly, in the Maxon-Viecelli formalism, the

term in 1=r is transformed into a 1=s term. Thus, a space-

like term surprisingly becomes a time-like term without any

explanation. A possible reason is found if one combines the

stretching (24) with the ordering of r so that one formally

obtains12,24

r ¼ e�3=2ðen� sÞ; (29)

which yields that 1=r � �e3=2ð1=sÞ, and requires that s be

negative. We note in passing that this can also be written as

r � �e�3=2s ¼ �t, a point that we shall return to in Sec.

IV B.

However, substituting for r in terms of s as indicated

above has several unintended and unfortunate consequences.

First of all, it transforms what is a spatial limitation into a

time limitation and thereby obscures the restrictions on r.

Second, the original equations (6)–(8) are autonomous in t,
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meaning not only that their linearized form can be Fourier

analyzed in time, but moreover, the homogeneity of time

allows us to choose the origin of our timekeeping freely at

will. Yet now, the 1=s terms in the Maxon-Viecelli approach

(faithfully followed by all the authors using their method)

will blow up at the origin of timekeeping that we were sup-

posed to be able to choose freely, without altering the

physics. This is physically not consistent, so that we shall

continue to write the terms in �=r in that form, at least for

the time being.

Returning now to (26), and neglecting the middle term in

�u1=r as being of order e5=2, we arrive at the linear result that

n1 ¼ u1 ¼ �u1: (30)

The determination of u1 involves an integration with respect

to n, which we will assume to occur for zero undisturbed

conditions infinitely far from the symmetry axis or origin.

This result is, of course, the same as one finds for planar ge-

ometry, that is, it does not reflect any nonplanar characteris-

tics at the linear level if 1=r � e3=2.

Turning our attention to the next significant order yields

@n2

@n
þ @n1

@s
þ �

r
u1 þ

@u2

@n
þ @

@n
n1u1ð Þ ¼ 0;

@u2

@n
þ @u1

@s
þ u1

@u1

@n
þ @u2

@n
¼ 0;

@2u1

@n2
þ n2 � u2 �

1

2
u2

1 ¼ 0:

(31)

In the last equation of (31), there should also be, in principle,

a term ð�=rÞ @u1=@n. However, if the reasoning is followed

as when dealing with the linear equations, it would be of

order e3, and thus has been omitted as being of higher order.

It thus follows that even to this order, the expanded

Poisson’s equation does not exhibit any nonplanar character-

istics, which are manifested only in the continuity equation.

Substituting (30) in this and eliminating all terms

involving n2, u2, and u2 leads to an extended KdV (eKdV)

equation

@u1

@s
� u1

@u1

@n
� 1

2

@3u1

@n3
� �

2r
u1 ¼ 0: (32)

Bearing in mind the fact that we have made a number of

approximations to reach this equation, it is important that we

consider carefully its region of validity. This can be found

by interpreting the 1=r term as follows. For linear amplitudes

of, say, n1 ¼ u1 ’ 1=10, it follows from (29) that r has to be

larger than r0 ’ 30 for this formalism to apply. Thus, out-

going solitons must start from r0 and propagate to larger dis-

tances, whereas inward propagating solitons can only be

validly described by (32), provided they get no closer than r0

to the axis or origin of symmetry. We shall return to this im-

portant aspect below.

B. Results and discussion

It is well-known that, for �¼ 0 (or formally also for

r ! þ1, although that limitation is not needed in pure

plane geometry), one might adopt the standard one-soliton

solution4

u1 ¼ 3w sech2

ffiffiffiffi
w

2

r
nþ wsð Þ

" #
; (33)

where w is the small excess over the linear acoustic speed, 1

in the chosen normalization. In the nonplanar geometry we

are discussing, (33) is only a solution to (32) in the formal

limit r ! þ1. This is an indication that there is no point in

using this expression as a starting point for the numerical

simulations of outgoing waves, to see how these would

evolve under (32) for even larger r. It thus underlines the

fact that one should consider ingoing waves only.

There are further remarks on the motion of the centre of

the solitary structure. Normal plots of (plane) solitons are

drawn in a co-moving frame, where the structure is station-

ary, in other words, centered on f¼ 0. Bearing in mind the

relation between the linear perturbations given by (30), to-

gether with (33), it follows that for typical linear amplitudes

’ 1=10, the excess speed w ’ 1=30. Hence, to a good

approximation f¼ 0 is close to n¼ 0, or x ’ jtj in plane ge-

ometry. Applying this reasoning also to nonplanar structures,

we find that r þ t ’ 0, so that very large r (intrinsically posi-

tive) corresponds to very negative t. This deduction is con-

sistent with our observation in Sec. IV A that r ’ �t.
Inward propagation can only be described by (32) as

long as r remains sufficiently large, and correspondingly, t
has to remain sufficiently negative. So, if we want to start

from the planar solution and let that evolve under (32), we

have thus determined a (qualitative) restriction on how large

jtj has to remain. This is the way out of the conundrum that,

even though the basic equations are autonomous in t and

therefore one might a priori think of choosing the origin of t
at liberty, the conditions on suitable values of r, and hence

on the proper use of (32), impose an origin for t that may not

be reached from large negative t. This constraint does not

appear to have been discussed in the literature at all.

Once all this is clarified, a final sticking point remains.

As derived, (32) is written in three variables, n, s, and r. For

numerical computations, this is unworkable, and we propose

to now eliminate r by the replacement r ! �s, as all terms

in (32) have been assumed to be of order e5=2. This brings

one in line with what is usually found in the papers dealing

with nonplanar solitons for the extended KdV equation

@u1

@s
� u1

@u1

@n
� 1

2

@3u1

@n3
þ �

2s
u1 ¼ 0: (34)

The important difference from the general literature is that

we are now fully aware of how the ranges in jsj and r are

limited by the strong constraint on the (relatively large) min-

imum distance from the axis or origin of symmetry that is

permitted by the framework underpinning this equation.

In addition,25 we note that in (32), with r appearing ex-

plicitly, the waves propagate in a region with variable curva-

ture at each time, whereas in (34) the curvature does not

appear explicitly and it is constant at each time, but changes

with time. The only way in which this is acceptable is if the
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spatial extent of all the perturbations, dr � r. That is, (34)

can only describe, e.g., in cylindrical coordinates, a narrow

annular region where dr=r � 1 and cannot address the prop-

agation of widely separated perturbations in the same do-

main. As perturbations move closer to r¼ 0, this restriction

becomes more severe. This is yet another rephrasing of argu-

ments that were outlined earlier.

We would like to stress that the eKdV equation for the

nonplanar case, given in (34), is not integrable in the usual

understanding of this property. As discussed already in our

previous paper,12 Infeld and Rowlands24 suggest that one mul-

tiply (34) by s, to obtain a continuity-like equation of the form

@

@s
u1sð Þ �

@

@n
s
2

u2
1 þ

@2u1

@n2

 !" #
¼ 0: (35)

This has been written for spherical modes, with �¼ 2, to

avoid discussions about the sign of s. Integration of (35)

over all n, from �1 to þ1, assuming that u1 and its deriva-

tives vanish at n ¼ 61, as we and all authors in this domain

have done, leads to

ðþ1
�1

@

@s
u1sð Þdn ¼ @

@s
s
ðþ1
�1

u1dn

( )
¼ 0: (36)

Indeed, as n and s are independent variables, one can inter-

change the differentiation with respect to s and the integra-

tion over all n, and also take s out of this integration. As the

integral
Ðþ1
�1 u1 dn is carried out over all n, it follows that

there is no n dependence left, only a s dependence implicitly

through u1. However, the expression between curly brackets

in (36) cannot depend on s, since its derivative with respect

to s vanishes. It must therefore be a pure constant, say, C,

yielding that ðþ1
�1

u1 dn ¼ C

s
; (37)

showing that the area under the curve u1 (the soliton profile)

vanishes as jsj ! 1 and blows up as s! 0.

This is clearly not a constant of the motion in the usual

sense. Therefore, multi-soliton solutions, infinite series of

conserved densities, the emergence of solitons from an initial

perturbation, and the like, do not exist, quite contrary to

what happens for the standard (planar) KdV equation. This

renders the choice of an initial profile in the numerical analy-

sis of the solutions of (34) of the utmost importance, as dis-

cussed below.

In our earlier paper,12 we discussed a selection of papers

[Refs. 12–14 and 16–56 therein] in order to examine the

extent to which the underlying restrictions on the use of the

Maxon-Viecelli method were heeded, e.g., keeping the

amplitudes sufficiently small. Now that we have a clearer

picture of the different limitations, we have done two things:

first, revisited the original references in our earlier paper,12

and second, included a selection of the recent literature pub-

lished in 2014 and 2015.18,26–42

Because we have dealt with a simple model for ion-

acoustic nonplanar modes, leading to a modified KdV

equation (32) or (34), we have restricted the 2014–2015

selection to those papers that also derived nonplanar evolu-

tion equations of the KdV family,18,26,29,33,35–38,40,42 includ-

ing the Gardner equation (KdV with quadratic and cubic

nonlinearities),30,32,39,41 and, at the limit, the KdV-Burgers

equation.27,28,31,34 Needless to say, most of these papers

have investigated plasma compositions more complicated

than our simple model, but have derived equations similar to

(34), with more intricate coefficients. Our focus on the sim-

plest plasma model, that of cold fluid ions and Boltzmann

electrons, is to avoid getting lost in the purely algebraic

details of more complicated plasma and wave models, and to

stress that already at this level the Maxon-Viecelli results are

of limited use.

A perusal of the graphs in the literature shows that most

of them are drawn in such a way that one is dealing with

inward propagation, as advocated here, but almost none

specify this, and it is very difficult to assess this from the

choices of the stretching in n and s.

Unfortunately, only about half of the papers quoted here

and in our earlier discussion12 respect the limit on the ampli-

tudes (n1 or u1 ’ 0:1), whether it be in the initial value cho-

sen for substitution in (33) to start the numerical solution or

at the point where the graphs stop.

More importantly, as explained above, the limit quoted

by Maxon and Viecelli on the minimum admissible r is inti-

mately connected to the adopted amplitudes. The latter, how-

ever, are intrinsically given by a general feature of the

reductive perturbation method. In the light of this, it is

extremely disappointing to see that none of the papers inves-
tigated even remotely respects the minimum limit on r, and

consequently, also on jsj. The sad conclusion is that all the

papers that we have surveyed breach the Maxon-Viecelli

limits in one or two ways, including even the original papers

themselves.

From the exposition given here and from the many exam-

ples in the literature, it is clear that reductive perturbation

theory can be adapted to the investigation of many other

nonplanar waves, describable by extensions of the Burgers,43

nonlinear Schr€odinger,44 Kadomtsev-Petviashvili,45 Zakharov-

Kuznetsov46 equations and many more. It would be unwieldy

to discuss all these in any reasonable detail, which would lead

to an overlong and unmanageable reference list. Moreover, the

plasma composition can also be extended in many directions

and still be handled in the framework discussed here.

Another aspect to be discussed is how the graphs illus-

trating the different papers have been generated. As in the

previous roundup,12 where it was an overwhelming majority,

all papers now reviewed18,27–42 bar one26 state that there is

no exact solution to (34), and therefore, the one-soliton solu-

tion (33) (or a suitable variation thereof) has been used as an

acceptable initial profile at large jsj (where supposedly

�u1=2s! 0) and then advanced towards smaller jsj,
towards the axis or centre of symmetry.

There are serious problems with this approach. The ini-

tial choices of what is called large jsj are all jsj 	 30, chosen

below or at the limit of a range where (34) is not valid, given

the approximations made to derive it. More fundamental is

that at jsj 	 30 one starts from the plane mode given in (33),
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which is then advanced under (34) deeper into the forbidden

domain, so that any result, even if numerically correct,

totally lacks credibility.

There are a couple of papers in the literature giving

exact solutions of the nonplanar KdV equation,26,47,48 but

these solutions are obtained through a series of transforma-

tions, are not at all what one could recognize as a solitary

wave of fixed form or of fixed speed, and are very difficult to

plot in a simple way in the original variables used in (34). In

addition, it is claimed47 that even at very large jsj these exact

solutions differ from the traditional sech-squared soliton,

seemingly implying that this is not a good choice to start the

numerical evaluations with.

The problem with the exact solutions is in a way remi-

niscent of what happens with the standard KdV equation. If

one considers the KdV equation as a given mathematical en-

tity, one can try to extract all possible information as to

invariants, soliton solutions, interaction properties, and so

on. However, if one approaches the KdV equation from a

physical point of view, it is derived in plasma physics

through the reductive perturbation method, which truncates

the intrinsically fully nonlinear basic equations to a certain

order. It seems then logical, but is often not implemented,

that the solutions of the KdV equation for a particular model

can only be valid from a physics point of view if they obey

the underlying restrictions. Clearly, the mathematical discus-

sion of the KdV equation and its properties does not care

about such restrictions, but the physicists must heed them.

The paper by Ghosh et al.26 is an illustration of the pre-

vious remarks: the exact solution (38) of their extended KdV

equation (12) is based on the Hirota transform.48 However,

as the plot in their Fig. 6 indicates, the amplitudes are far too

large and the normalized time goes from �10 to þ10, right

through zero without any infinity there, although it is well

known that any solution of the extended KdV equation

becomes infinite when s! 0 (in our notation, g in theirs).

V. CONCLUSIONS

In recent years, we have observed the appearance of

numerous papers on weakly nonlinear nonplanar solitons

that appear to have a cavalier attitude towards the limitations

imposed by the underlying assumptions of the formalism

used. Hence, we have presented a thorough analysis of the

basis and the implications of the stretching and related

aspects of the technique pioneered by Maxon and Viecelli5,6

in their development and interpretation of an extended

Korteweg-de Vries (eKdV) equation:

(1) We have shown unequivocally that the stretching used

by Maxon and Viecelli for nonplanar structures5,6,13,14

implies severe restrictions on the spatial domain where

the resulting eKdV equation can produce acceptable

results, even though the stretching looks deceptively

simple, copying essentially the standard plane-wave

stretching by replacing a cartesian by a radial coordinate.

The most stringent restriction is the one which is not

obeyed at all in the literature, as far as the applications

are concerned: one has to keep a minimum distance

away from the axis or centre of symmetry for cylindrical

or spherical modes, respectively. At closer distances, the

eKdV equation is not valid.

(2) This minimum distance is intrinsically tied to the weakly

nonlinear amplitudes acceptable under the reductive per-

turbation analysis used to derive the eKdV equation.

This is not new, as already noted by Maxon and Viecelli

themselves,6,13,14 although universally ignored.

(3) Going through the algebra one arrives at an eKdV equa-

tion, extending the well-known KdV equation with a

term which is linear in u1 and inversely proportional to

the slow time s. The proper derivation leads to a term in

u1=r, indicating the restriction in r. This is then trans-

ferred to a limitation on s by combining the elements of

the stretching, a procedure which obscures the spatial or-

igin of the restriction.

(4) The eKdV equation (34) has no soliton solution in the

accepted sense, and no direct exact solution. Instead, there

are procedures in the literature which reduce the eKdV

equation to a standard KdV equation through a series of

coordinate transformations.47,48 Transforming back to the

original variables n and s yields a mathematically correct

solution, if the eKdV equation were given. Unfortunately,

however, it does not satisfy the restrictions placed on the

validity of the eKdV equation as derived in a given con-

text, and hence is physically not acceptable.

(5) Therefore, almost all papers use for the visualisation of

the soliton profiles, the usual sech-squared one-soliton

solution as an initial profile, at a supposedly large dis-

tance away from the axis or centre of geometry, where

the structures are assumed quasi-planar. For more com-

plicated plasma compositions and nonlinear evolution

equations the procedure is analogous, mutatis mutandis.

However, since the original starting distance is unfortu-

nately already at or below the minimum forced by the

restrictions imposed by the analytical derivation of (34),

the resulting graphs make no sense: the evolution of the

initial sech-squared soliton is governed by an equation

which is not valid in the domain covered by the figures.

(6) The upshot of all this is that we do not really know how

nonplanar modes would look like and evolve when prop-

agating towards the singularity at s¼ 0 or r¼ 0, except

that the amplitude would blow up. At the minimum dis-

tances imposed by the modified reductive perturbation

analysis the structures look very much quasi-planar, and

thus, the new physically correct information of this part

of the literature is meagre. We thus repeat one of our ear-

lier conclusions12 that this is a problem which would be

well served by a serious numerical simulation, not start-

ing from the restricted eKdV equation but directly from

the basic equations, without approximations.
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