38 research outputs found

    Nonlinear Bayesian Estimation with Compactly Supported Wavelets

    Get PDF
    Bayesian estimation for nonlinear systems is still a challenging problem, as in general the type of the true probability density changes and the complexity increases over time. Hence, approximations of the occurring equations and/or of the underlying probability density functions are inevitable. In this paper, we propose an approximation of the conditional densities by wavelet expansions. This kind of representation allows a sparse set of characterizing coefficients, especially for smooth or piecewise smooth density functions. Besides its good approximation properties, fast algorithms operating on sparse vectors are applicable and thus, a good trade-off between approximation quality and run-time can be achieved. Moreover, due to its highly generic nature, it can be applied to a large class of nonlinear systems with a high modeling accuracy. In particular, the noise acting upon the system can be modeled by an arbitrary probability distribution and can influence the system in any way

    Stochastic Nonlinear Model Predictive Control with Guaranteed Error Bounds Using Compactly Supported Wavelets

    Get PDF
    In model predictive control, a high quality of control can only be achieved, if the model of the system reflects the real-world process as precisely as possible. Therefore, the controller should be capable of both handling a nonlinear system description and systematically incorporating uncertainties affecting the system. Since stochastic nonlinear model predictive control (SNMPC) problems in general cannot be solved in closed form, either the system model or the occurring densities have to be approximated. In this paper, we present an SNMPC framework, which approximates the densities and the reward function by their wavelet expansions. Due to the few requirements on the shape and family of the densities or reward function, the presented technique can be applied to a large class of SNMPC problems. For accelerating the optimization, we additionally present a novel thresholding technique, the so-called dynamic thresholding, which neglects coefficients that are insignificant, while at the same time guaranteeing that the optimal control input is still chosen. The capabilities of the proposed approach are demonstrated by simulations with a path planning scenario

    Nonlinear Model Predictive Control Considering Stochastic and Systematic Uncertainties with Sets of Densities

    Get PDF
    In Model Predictive Control, the quality of control is highly dependent upon the model of the system under control. Therefore, a precise deterministic model is desirable. However, in real-world applications, modeling accuracy is typically limited and systems are generally affected by disturbances. Hence, it is important to systematically consider these uncertainties and to model them correctly. In this paper, we present a novel Nonlinear Model Predictive Control method for systems affected by two different types of perturbations that are modeled as being either stochastic or unknown but bounded quantities. We derive a formal generalization of the Nonlinear Model Predictive Control principle for considering both types of uncertainties simultaneously, which is achieved by using sets of probability densities. In doing so, a more robust and reliable control is obtained. The capabilities and benefits of our approach are demonstrated in real-world experiments with miniature walking robots

    Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review

    Get PDF
    Background: State-of-the-art classifiers based on convolutional neural networks (CNNs) were shown to classify images of skin cancer on par with dermatologists and could enable lifesaving and fast diagnoses, even outside the hospital via installation of apps on mobile devices. To our knowledge, at present there is no review of the current work in this research area. Objective: This study presents the first systematic review of the state-of-the-art research on classifying skin lesions with CNNs. We limit our review to skin lesion classifiers. In particular, methods that apply a CNN only for segmentation or for the classification of dermoscopic patterns are not considered here. Furthermore, this study discusses why the comparability of the presented procedures is very difficult and which challenges must be addressed in the future. Methods: We searched the Google Scholar, PubMed, Medline, ScienceDirect, and Web of Science databases for systematic reviews and original research articles published in English. Only papers that reported sufficient scientific proceedings are included in this review. Results: We found 13 papers that classified skin lesions using CNNs. In principle, classification methods can be differentiated according to three principles. Approaches that use a CNN already trained by means of another large dataset and then optimize its parameters to the classification of skin lesions are the most common ones used and they display the best performance with the currently available limited datasets. Conclusions: CNNs display a high performance as state-of-the-art skin lesion classifiers. Unfortunately, it is difficult to compare different classification methods because some approaches use nonpublic datasets for training and/or testing, thereby making reproducibility difficult. Future publications should use publicly available benchmarks and fully disclose methods used for training to allow comparability

    Patients' and dermatologists' preferences in artificial intelligence–driven skin cancer diagnostics: a prospective multicentric survey study

    Get PDF
    To the Editor: Artificial intelligence (AI) has shown promise for improving diagnostics of skin cancer by matching or surpassing experienced clinicians.1 However, the successful clinical application depends on acceptance by patients and dermatologists. In this prospective multicentric survey study with a response rate of 63%, we therefore investigate the criteria required for patients and dermatologists to accept AI-systems and assess their importance on patients’ and dermatologists’ decision-making when considering the use of such systems. To this end, we perform an adaptive choice-based conjoint analysis and analyze it using hierarchical Bayes estimation.2 By employing an adaptive choice-based conjoint analysis, we investigate multiple influencing AI-features simultaneously (see Table I) whilst accounting for possible trade-offs (see Fig 1). For details on questionnaire development, participant recruitment, and statistical analysis, see Supplementary Methods, available via Mendeley at https://data.mendeley.com/datasets/2chcwnhpwj/1

    Teledermatology: Comparison of Store-and-Forward Versus Live Interactive Video Conferencing

    Get PDF
    A decreasing number of dermatologists and an increasing number of patients in Western countries have led to a relative lack of clinicians providing expert dermatologic care. This, in turn, has prolonged wait times for patients to be examined, putting them at risk. Store-and-forward teledermatology improves patient access to dermatologists through asynchronous consultations, reducing wait times to obtain a consultation. However, live video conferencing as a synchronous service is also frequently used by practitioners because it allows immediate interaction between patient and physician. This raises the question of which of the two approaches is superior in terms of quality of care and convenience. There are pros and cons for each in terms of technical requirements and features. This viewpoint compares the two techniques based on a literature review and a clinical perspective to help dermatologists assess the value of teledermatology and determine which techniques would be valuable in their practice

    Test Time Augmentation Meets Post-hoc Calibration: Uncertainty Quantification under Real-World Conditions

    No full text
    Communicating the predictive uncertainty of deep neural networks transparently and reliably is important in many safety-critical applications such as medicine. However, modern neural networks tend to be poorly calibrated, resulting in wrong predictions made with a high confidence. While existing post-hoc calibration methods like temperature scaling or isotonic regression yield strongly calibrated predictions in artificial experimental settings, their efficiency can significantly reduce in real-world applications, where scarcity of labeled data or domain drifts are commonly present. In this paper, we first investigate the impact of these characteristics on post-hoc calibration and introduce an easy-to-implement extension of common post-hoc calibration methods based on test time augmentation. In extensive experiments, we demonstrate that our approach results in substantially better calibration on various architectures. We demonstrate the robustness of our proposed approach on a real-world application for skin cancer classification and show that it facilitates safe decision-making under real-world uncertainties

    Western Star (Corner Brook, N.L.), 1949-04-19

    Get PDF
    The Western Star began publication on Newfoundland's west coast on 4 April 1900, appearing weekly with brief semiweekly periods up to 1952, when it became a daily. The current collection contains 21 April 1900 - 31 December 1952
    corecore