189 research outputs found

    Experimental investigation and modeling of diesel engine fuel spray

    Get PDF
    A model for spray penetration in diesel engines is suggested. It is based on momentum conservation for a realistic mass flow rate transient profile. The modelling approach is based on tracking of centre-of-fuel-mass (COFM) of injected diesel fuel. The model was validated for Bosch and Delphi injectors using the data obtained at Sir Harry Ricardo automotive centre, University of Brighton, UK. The model is shown to produce a good agreement with the experimental data until major spray instability (such as cluster shedding). It has been found that the dispersion time (the adjustable model parameter) is increasing when injection pressure is decreasing. This follows the known tendency for spray breakup time

    On the application of proper orthogonal decomposition (POD) for in-cylinder flow analysis

    Get PDF
    Proper orthogonal decomposition (POD) is a coherent structure identification technique based on either measured or computed data sets. Recently, POD has been adopted for the analysis of the in-cylinder flows inside internal combustion engines. In this study, stereoscopic particle image velocimetry (Stereo-PIV) measurements were carried out at the central vertical tumble plane inside an engine cylinder to acquire the velocity vector fields for the in-cylinder flow under different experimental conditions. Afterwards, the POD analysis were performed firstly on synthetic velocity vector fields with known characteristics in order to extract some fundamental properties of the POD technique. These data were used to reveal how the physical properties of coherent structures were captured and distributed among the POD modes, in addition to illustrate the difference between subtracting and non-subtracting the ensemble average prior to conducting POD on datasets. Moreover, two case studies for the in-cylinder flow at different valve lifts and different pressure differences across the air intake valves were presented and discussed as the effect of both valve lifts and pressure difference have not been investigated before using phase-invariant POD analysis. The results demonstrated that for repeatable flow pattern, only the first mode was sufficient to reconstruct the physical properties of the flow. Furthermore, POD analysis confirmed the negligible effect of pressure difference and subsequently the effect of engine speed on flow structures

    Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines

    Get PDF
    Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis

    Assessment of HIF-1α expression and release following endothelial injury in-vitro and in-vivo

    Get PDF
    Background: Endothelial injury is an early and enduring feature of cardiovascular disease. Inflammation and hypoxia may be responsible for this, and are often associated with the up-regulation of several transcriptional factors that include Hypoxia Inducible Factor-1 (HIF-1). Although it has been reported that HIF-1α is detectable in plasma, it is known to be unstable. Our aim was to optimize an assay for HIF-1α to be applied to in vitro and in vivo applications, and to use this assay to assess the release kinetics of HIF-1 following endothelial injury. Methods: An ELISA for the measurement of HIF in cell-culture medium and plasma was optimized, and the assay used to determine the best conditions for sample collection and storage. The results of the ELISA were validated using Western blotting and immunohistochemistry (IHC). In vitro, a standardized injury was produced in a monolayer of rat aortic endothelial cells (RAECs) and intracellular HIF-1α was measured at intervals over 24 hours. In vivo, a rat angioplasty model was used. The right carotid artery was injured using a 2F Fogarty balloon catheter. HIF-1α was measured in the plasma and in the arterial tissue (0, 1, 2, 3 and 5 days post injury). Results: The HIF-1α ELISA had a limit of detection of 2.7 pg/ mL and was linear up to 1000 pg/ mL. Between and within-assay coefficient of variation values were less than 15%. HIF-1α was unstable in cell lysates and plasma, and it was necessary to add a protease inhibitor immediately after collection, and to store samples at -800C prior to analysis. The dynamics of HIF-1α release were different for the in vitro and in vivo models. In vitro, HIF-1α reached maximum concentrations approximately 2h post injury, whereas peak values in plasma and tissues occurred approximately 2 days post injury, in the balloon injury model. Conclusion: HIF-1α can be measured in plasma, but this requires careful sample collection and storage. The carotid artery balloon injury model is associated with the transient release of HIF-1α into the circulation that probably reflects the hypoxia induced in the artery wall

    Structure−Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives

    Get PDF
    The two-photon absorption properties of a series of bis dialkylamino- or diarylamino-substituted diphenylpolyenes and bis(styryl)benzenes have been investigated. Two-photon absorption cross sections, δ, as large as 1420 × 10^(-50) cm^4 s/photon-molecule have been observed for molecules with this general bis-donor structure. The effect of the type and length of the conjugated chain and of dialkylamino or diarylamino substitution on the position and magnitude of the peak two-photon absorptivity is reported. The transition dipole moments for the transitions between the ground state and the first excited singlet state (M_(ge)) and between the first and second excited singlet states (M_(ee‘)) have been estimated using experimental data from the one- and two-photon spectra. It was found that increases in chain length result mainly in an increase in M_(ge), whereas the addition of donor end groups or going from diphenylpolyene- to phenylene-vinylene-type bridges leads primarily to an increase in Mee‘. The trends in the energy of the lowest excited singlet states and in the transition moments for the diphenylpolyene series as a function of chain length are in agreement with those calculated by quantum mechanical methods. These results furnish a link between structural features in these classes of molecules and the electronic dipole couplings and state energies that control the strength of the two-photon absorption. In bis(aminophenyl)polyenes containing up to four double bonds (m) the lowest excited singlet state is a B_u state, as opposed to the case of simple polyenes and diphenylpolyenes, for which it is an A_g state for m > 2. The relationship of the state ordering in these systems with the observed values of the radiative and nonradiative decay rates is also discussed

    Three-dimensional microfabrication using two-photon-activated chemistry

    Get PDF
    Photochemical reactions which can be activated by the simultaneous absorption of two photons provide a means for single-step fabrication of complex 3D microstructures. These types of structures are needed for a wide range of applications, including microfluidics, electrooptics, and micro-electromechanical systems. We have shown that chromophores can be engineered to have both large two-photon absorptivities as well as an efficient means for activating chemical processes, such as radical polymerization, subsequent to the photoexcitation. Chromophores designed following this strategy two-photon-activate the radical polymerization of acrylates at lower incident laser powers than conventional UV initiators. Efficient two-photon photopolymer resins based on these chromophores were used in the fabrication of complex microarchitectures, such as photonic bandgap structures and tapered waveguides. We have devised a strategy which allows this approach to be extended to other chemical systems

    Cement degradation in CO2 storage sites: a review on potential applications of nanomaterials

    Get PDF
    © 2018 The Author(s) Carbon capture and sequestration (CCS) has been employed to reduce global warming, which is one of the critical environmental issues gained the attention of scientific and industrial communities worldwide. Once implemented successfully, CCS can store at least 5 billion tons of CO2per year as an effective and technologically safe method. However, there have been a few issues raised in recent years, indicating the potential leakages paths created during and after injection. One of the major issues might be the chemical interaction of supercritical CO2with the cement, which may lead to the partial or total loss of the cement sheath. There have been many approaches presented to improve the physical and mechanical properties of the cement against CO2attack such as changing the water-to-cement ratio, employing pozzolanic materials, and considering non-Portland cements. However, a limited success has been reported to the application of these approaches once implemented in a real-field condition. To date, only a few studies reported the application of nanoparticles as sophisticated additives which can reinforce oil well cements. This paper provides a review on the possible application of nanomaterials in the cement industry where physical and mechanical characteristics of the cement can be modified to have a better resistance against corrosive environments such as CO2storage sites. The results obtained indicated that adding 0.5 wt% of Carbon NanoTubes (CNTs) and NanoGlass Flakes (NGFs) can reinforce the thermal stability and coating characteristics of the cement which are required to increase the chance of survival in a CO2sequestrated site. Nanosilica can also be a good choice and added to the cement by as much as 3.0 wt% to improve pozzolanic reactivity and thermal stability as per the reports of recent studies

    Bayesian Model Selection Applied to the Analysis of Fluorescence Correlation Spectroscopy Data of Fluorescent Proteins in Vitro and in Vivo

    Get PDF
    Fluorescence correlation spectroscopy (FCS) is a powerful technique to investigate molecular dynamics with single molecule sensitivity. In particular, in the life sciences it has found widespread application using fluorescent proteins as molecularly specific labels. However, FCS data analysis and interpretation using fluorescent proteins remains challenging due to typically low signal-to-noise ratio of FCS data and correlated noise in autocorrelated data sets. As a result, naive fitting procedures that ignore these important issues typically provide similarly good fits for multiple competing models without clear distinction of which model is preferred given the signal-to-noise ratio present in the data. Recently, we introduced a Bayesian model selection procedure to overcome this issue with FCS data analysis. The method accounts for the highly correlated noise that is present in FCS data sets and additionally penalizes model complexity to prevent over interpretation of FCS data. Here, we apply this procedure to evaluate FCS data from fluorescent proteins assayed in vitro and in vivo. Consistent with previous work, we demonstrate that model selection is strongly dependent on the signal-to-noise ratio of the measurement, namely, excitation intensity and measurement time, and is sensitive to saturation artifacts. Under fixed, low intensity excitation conditions, physical transport models can unambiguously be identified. However, at excitation intensities that are considered moderate in many studies, unwanted artifacts are introduced that result in nonphysical models to be preferred. We also determined the appropriate fitting models of a GFP tagged secreted signaling protein, Wnt3, in live zebrafish embryos, which is necessary for the investigation of Wnt3 expression and secretion in development. Bayes model selection therefore provides a robust procedure to determine appropriate transport and photophysical models for fluorescent proteins when appropriate models are provided, to help detect and eliminate experimental artifacts in solution, cells, and in living organisms.National Science Foundation (U.S.). Physics of Living Systems ProgramNational Institute of Mental Health (U.S.) (Award U01MH106011

    Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels

    Get PDF
    Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels
    corecore