2,043 research outputs found

    The Serenitatis Basin and the Taurus-Littrow highlands: Geological context and history

    Get PDF
    The Apollo 17 mission was targeted to land at the southeastern edge of the Serenitatis Basin, one of a number of large impact basins on the Moon. The geologic setting of the Apollo 17 site is reviewed, the implications for the formation of basins from Apollo 17 results are assessed, and unanswered questions potentially addressable with existing and new data are outlined

    Lakshmi Planum: A distinctive highland volcanic province

    Get PDF
    Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region

    A morphologic study of Venus Ridge belts

    Get PDF
    Ridge belts, first identified in the Venera 15/16 images are distinguished as linear regions of concentrated, parallel to anastomosing, ridges. They are tens to several hundreds of km wide, hundreds to over one thousand km long, and composed of individual ridges 5 to 20 km wide and up to 200 km long. The ridges appear symmetrical in the radar images and are either directly adjacent to each other or separated by mottled plains. Cross-strike lineaments, visible as dark or bright lines, are common within the ridge belts, and some truncate individual ridges. In places the ridge belt may be offset by these lineaments, but such offset is rarely consistent across the ridge belt. Once the mode of formation of these ridge belts is understood, their distribution and orientation will help to constrain the homogeneity and orientation of the stresses over the period of ridge belt formation. The look direction for the Venera system was to the west, so ridges appear as pairs of bright and dark lineaments, with the bright line to the east of the dark. The term ridge was used in a general sense to refer to a linear rise. The use of this term is restricted to rises which have a sharp transition from bright to dark at the crest, and are 5 to 15 km wide. These ridges are either continuous or discontinuous. The continuous ridges are over 30 km long and form coherent ridge belts, while the discontinuous ridges are less than 30 km long and do not form a coherent ridge belt. The continuous ridges were divided into 3 components: (1) Anastomosing ridges, in which the individual ridges are sinuous and often meet and cross at small angles, are the most common component; (2) The parallel ridge component also consists of well defined ridges, often with plains separating the individual ridges, but the ridges are more linear and rarely intersect one another; and (3) Parallel ridged plains are composed of indistinct ridges, some of which do not have a distinctive bright-dark pattern. The nature of deformation within the ridge belts is complex and not fully understood at present. Some belts show distinct signs of compression, while others have symmetrical patterns expected in extensional environments. Thus the ridge belts may have formed by more than one style of deformation; some may be extensional, while others are compressional. All the ridge belts are being systematically mapped, especially for symmetrical relationships

    Geology of the Venus equatorial region from Pioneer Venus radar imaging

    Get PDF
    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae

    Venus steep-sided domes: Relationships between geological associations and possible petrogenetic models

    Get PDF
    Venus domes are characterized by steep sides, a circular shape, and a relatively flat summit area. In addition, they are orders of magnitude larger in volume and have a lower height/diameter ratio than terrestrial silicic lava domes. The morphology of the domes is consistent with formation by lava with a high apparent viscosity. Twenty percent of the domes are located in or near tessera (highly deformed highlands), while most other (62 percent) are located in and near coronae (circular deformational features thought to represent local mantle upwelling). These geological associations provide evidence for mechanisms of petrogenesis and several of these models are found to be plausible: remelting of basaltic or evolved crust, differentiation of basaltic melts, and volatile enhancement and eruption of basaltic foams. Hess and Head have shown that the full range of magma compositions existing on the Earth is plausible under various environmental conditions on Venus. Most of the Venera and Vego lander compostional data are consistent with tholeiitic basalt; however, evidence for evolved magmas was provided by Venera 8 data consistent with a quartz monzonite composition. Pieters et al. have examined the color of the Venus surface from Venera lander images and interpret the surface there to be oxidized. Preliminary modeling of dome growth has provided some interpretations of lava rheology. Viscosity values obtained from these models range from 10(exp 14) - 10(exp 17) pa*s, and the yield strength has been calculated to be between 10(exp 4) and 10(exp 6) Pa, consistent with terrestrial silicic rocks. The apparent high viscosity of the dome lavas suggests that the domes have a silicic composition or must augment their viscosity with increased visicularity or crystal content. Sixty-two percent of the Venus domes are associated with coronae, circular features that have been proposed as sites of mantle upwelling, and 20 percent of the domes are located near tessera, relatively high areas of complex deformed terrain. We have investigated several models that are consistent with these geologic associations. The first case involves the differentiation of basalt in a magma reservoir in the crust, perhaps produced by partial melting within a mantle plume. The second case is melting at the base of thickened basaltic crust, and the final case is volatile exsolution and enhancement within a basaltic magma reservoir. The association of domes with tessera might be explained by crustal remelting, while the association with coronae may be consistent with chemical differentiation of a magma reservoir or the exsolution and concentration of volatiles in the reservoir before eruption

    Eastern Ishtar Terra: Tectonic evolution derived from recognized features

    Get PDF
    Previous analyses have recognized several styles and orientations of compressional deformation, crustal convergence, and crustal thickening in Eastern Ishtar Terra. An east to west sense of crustal convergence through small scale folding, thrusting, and buckling is reflected in the high topography and ridge-and-valley morphology of Maxwell Montes and the adjacent portion of Fortuna Tessera. This east to west convergence was accompanied by up to 1000 km of lateral motion and large scale strike-slip faulting within two converging shear zones which has resulted in the present morphology of Maxwell Montes. A more northeast to southwest sense of convergence through large scale buckling and imbrication is reflected in large, northwest-trending scarps along the entire northern boundary of Ishtar Terra, with up to 2 km of relief present at many of the scarps. It was previously suggested that both styles of compression have occurred at the expense of pre-existing tessera regions which have then been overprinted by the latest convergence event. The difference in style is attributed mostly to differences in the properties of the crust converging with the tessera blocks. If one, presumably thick, tessera block converges with another tessera region, then the widespread, distributed style of deformation occurs, as observed in western Fortuna Tessera. However, if relatively thin crust (such as suggested for the North Polar Plains converges with thicker tessera regions, then localized deformation occurs, as reflected in the scarps along Northern Ishtar Terra. The purpose is to identify the types of features observed in Eastern Ishtar Terra. Their potential temporal and spatial relationships, is described, possible origins for them is suggested, and how the interpretation of some of these features has led to the multiple-style tectonic evolution model described is shown

    Tessera terrain: Characteristics and models of origin

    Get PDF
    Tessera terrain consists of complexly deformed regions characterized by sets of ridges and valleys that intersect at angles ranging from orthogonal to oblique, and were first viewed in Venera 15/16 SAR data. Tesserae cover more area (approx. 15 percent of the area north of 30 deg N) than any of the other tectonic units mapped from the Venera data and are strongly concentrated in the region between longitudes 0 deg E and 150 deg E. Tessera terrain is concentrated between a proposed center of crustal extension and divergence in Aphrodite and a region of intense deformation, crustal convergence, and orogenesis in western Ishtar Terra. Thus, the tectonic processes responsible for tesserae are an important part of Venus tectonics. As part of an effort to understand the formation and evolution of this unusual terrain type, the basic characteristics of the tesserae were compared to the predictions made by a number of tectonic models. The basic characteristics of tessera terrain are described and the models and some of their basic predictions are briefly discussed

    Sequential deformation of plains along Tessera boundaries on Venus: Evidence from Alpha Regio

    Get PDF
    Tesserae are regions of elevated terrain characterized by two or more sets of ridges and grooves that intersect orthogonally. Tesserae comprise 15-20 percent of the surface of Venus, but the nature of their formation and evolution is not well understood; processes proposed to account for their characteristics are many and varied. Two types of tessera boundaries have been described: type 1 are generally embayed by plains; and type 2 boundaries are characterized by being linear at the 100-km scale and often associated with steep scarps or tectonic features. Margins such as the western edge of Alpha have been described as type 2. Some of the tessera have boundaries that display deformation of both the edge of the tessera and the adjoining plains. This study focuses on the western edge of Alpha Regio in an effort to characterize on occurrence of this type of boundary and assess the implications of the style in general. Using Magellan SAR imagery, lineament lengths, orientations, and spacing were measured for ten 50 x 60 km areas spanning 500 km of the western boundary. Structural characteristics and orientations were compared to stratigraphic units in order to assess the sequence and style of deformation

    Thermal buoyancy on Venus: Preliminary results of finite element modeling

    Get PDF
    Enhanced surface temperatures and a thinner lithosphere on Venus relative to Earth have been cited as leading to increased lithospheric buoyancy. This would limit or prevent subduction on Venus and favor the construction of thickened crust through underthrusting. In order to evaluate the conditions distinguishing between underthrusting and subduction, we have modeled the thermal and buoyancy consequences of the subduction end member. This study considers the fate of a slab from the time it starts to subduct, but bypasses the question of subduction initiation. Thermal changes in slabs subducting into a mantle having a range of initial geotherms are used to predict density changes and thus their overall buoyancy. Finite element modeling is then applied in a first approximation of the assessment of the relative rates of subduction as compared to the buoyant rise of the slab through a viscous mantle

    Determining stress states using dike swarms: The Lauma Dorsa example

    Get PDF
    Initial examination of the Magellan coverage of Venus has revealed between 150 and 300 large, radially lineated landforms distributed across the planet's surface. Where the lineaments have been examined in detail, the majority fail to exhibit signatures indicative of relief at or above the resolution of the radar; however, when the sense of topographic relief may be ascertained, the lineaments commonly appear as fissures or flat-floored trenches interpreted as graben. Individual lineaments can display graben, fissure, and zero relief behavior along their length, suggesting either that these differences are a function of the resolution of the radar, or that the morphological distinctions are real but somehow genetically linked. In many instances, radial lineaments exhibiting these characteristics are directly associated with surface volcanism, including flanking and terminal flows, superimposed shield domes and pit chains, and central, calderalike topographic lows. These observable characteristics, as well as theoretical studies and comparison with similar terrestrial features, have led to the working hypothesis that many of the radial fracture systems on Venus are the surface manifestation of subsurface dikes propagating laterally from a central magma source. If this interpretation is correct, studies of terrestrial dikes suggest that the lineament directions, with localized exceptions and barring subsequent deformation, should be perpendicular to the orientation of the least compressive stress at the time of their formation. To test this hypothesis, we briefly examine a radial fracture system (63.7 degrees N, 195 degrees E) located between two deformation belts in Vinmara Planitia, and verify that the lineaments to the east behave in the expected manner. We have also chosen this feature, however, because of its proximity to Lauma Dorsa to the west. On the basis of Venera 15/16 data, both compressional and extensional origins for this deformation belt have been proposed. By examining the stratigraphy and applying our interpretation that the fracture system is linked to the presence of subsurface dikes, we present an independent evaluation of the stress state associated with Lauma Dorsa, and thus contribute to the assessment of its origin
    corecore