349 research outputs found

    Design and performance of the Fermilab Constant Fraction Discriminator ASIC

    Full text link
    We present the design and performance characterization results of the novel Fermilab Constant Fraction Discriminator ASIC (FCFD) developed to readout low gain avalanche detector (LGAD) signals by directly using a constant fraction discriminator (CFD) to measure signal arrival time. Silicon detectors with time resolutions less than 30 ps will play a critical role in future collider experiments, and LGADs have been demonstrated to provide the required time resolution and radiation tolerance for many such applications. The FCFD has a specially designed discriminator that is robust against amplitude variations of the signal from the LGAD that normally requires an additional correction step when using a traditional leading edge discriminator based measurement. The application of the CFD directly in the ASIC promises to be more reliable and reduces the complication of timing detectors during their operation. We will present a summary of the measured performance of the FCFD for input signals generated by internal charge injection, LGAD signals from an infrared laser, and LGAD signals from minimum-ionizing particles. The mean time response for a wide range of LGAD signal amplitudes has been measured to vary no more than 15 ps, orders of magnitude more stable than an uncorrected leading edge discriminator based measurement, and effectively removes the need for any additional time-walk correction. The measured contribution to the time resolution from the FCFD ASIC is also found to be 10 ps for signals with charge above 20 fC

    Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory

    No full text
    A search for new physics in top quark production with additional fnal-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at √ s = 13 TeV at the LHC during 2016–2018. The data set corresponds to an integrated luminosity of 138 fb−1 . Using the framework of efective feld theory (EFT), potential new physics efects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pT) of the leading pair of leptons and/or jets as well as the pT of on-shell Z bosons are used to extract the 95% confdence intervals of the 26 Wilson coefcients corresponding to these EFT operators. No signifcant deviation with respect to the standard model prediction is found.ISSN:1126-6708ISSN:1029-847

    Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions √s = 13 TeV

    No full text
    A search for direct production of low-mass dimuon resonances is performed using √s = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017–2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb−1. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1–2.6 GeV and 4.2–7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world’s best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε2 in the dark photon model above 10−6 are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin(θH) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tan β = 0.5.ISSN:1126-6708ISSN:1029-847

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s= \sqrt{s} = 5.02 TeV

    No full text
    The inclusive jet cross section is measured as a function of jet transverse momentum pT p_{\mathrm{T}} and rapidity y y . The measurement is performed using proton-proton collision data at s= \sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4pb1\,\text{pb}^{-1}. The jets are reconstructed with the anti-kT k_{\mathrm{T}} algorithm using a distance parameter of R= R= 0.4, within the rapidity interval y< |y| < 2, and across the kinematic range 0.06 <pT< < p_{\mathrm{T}} < 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS \alpha_\mathrm{S} .The inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory

    No full text
    A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at s\sqrt{s} = 13 TeV at the LHC during 2016-2018. The data set corresponds to an integrated luminosity of 138 fb1^{-1}. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pTp_\mathrm{T}) of the leading pair of leptons and/or jets as well as the pTp_\mathrm{T} of on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found

    Observation of new structure in the J/ψ\psiJ/ψ\psi mass spectrum in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for near-threshold structures in the J/ψ\psiJ/ψ\psi invariant mass spectrum produced in proton-proton collisions at s\sqrt{s} = 13 TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb1^{-1}. A new structure is observed with a significance above 5 standard deviations at a mass of 6552 ±\pm 10 (stat) ±\pm 12 (syst) MeV. Another structure with even higher significance is found at a mass of 6927 ±\pm 9 (stat) ±\pm 4 (syst) MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.1 standard deviations, is found at a mass of 728718+20^{+20}_{-18} (stat) ±\pm 5 (syst) MeV. The masses and significances are obtained in a model without considering possible quantum mechanical interference between the resonances. Incorporating this interference provides a better description of the mass spectrum between the resonances and shifts the measured masses by up to 150 MeV
    corecore