4 research outputs found
Germination of Aspergillus niger conidia
Aspergillus niger is a black-spored filamentous fungus that forms asexual spores called conidospores (‘conidia’). Germination of conidia, leading to the formation of hyphae, is initiated by conidial swelling and mobilisation of endogenous carbon and energy stores, followed by polarisation and emergence of a hyphal germ tube. These morphological and biochemical changes which define the model of germination have been studied with the aim of understanding how conidia sense and utilise different soluble carbon sources for germination. Microscopy and flow cytometry were used to track the morphological changes and results showed that the germination of A. niger conidia was quicker and more homogenous in rich media than in minimal media. The germination of conidia was also shown to be quicker in the presence of D-glucose than D-xylose. In the absence of a carbohydrate, no visual indicators of germination were evident. Added to this, the metabolism of internal storage compounds was shown to only occur in the presence of a suitable carbon source. Specific environmental carbon sources may therefore serve as triggers of germination, i.e. to initiate the catabolism of stores such as D-trehalose and the swelling of conidia. Studies carried out using D-glucose analogues identified the structural features of sugars that trigger or support conidial germination. These studies showed that the arrangement of atoms on carbons 3 and 4, on the pyranose ring structure of D-glucose, are essential to serve as a trigger of germination. The trigger step preceeds, and is separate from, the energy generation step that supports the continued outgrowth. Transcriptomic studies found that the most significant changes were associated with the breaking of dormancy. The data also revealed that fermentative metabolism present at the early stages of spore germination is rapidly replaced by respiratory metabolism
Germination of Aspergillus niger conidia
Aspergillus niger is a black-spored filamentous fungus that forms asexual spores called conidospores (‘conidia’). Germination of conidia, leading to the formation of hyphae, is initiated by conidial swelling and mobilisation of endogenous carbon and energy stores, followed by polarisation and emergence of a hyphal germ tube. These morphological and biochemical changes which define the model of germination have been studied with the aim of understanding how conidia sense and utilise different soluble carbon sources for germination. Microscopy and flow cytometry were used to track the morphological changes and results showed that the germination of A. niger conidia was quicker and more homogenous in rich media than in minimal media. The germination of conidia was also shown to be quicker in the presence of D-glucose than D-xylose. In the absence of a carbohydrate, no visual indicators of germination were evident. Added to this, the metabolism of internal storage compounds was shown to only occur in the presence of a suitable carbon source. Specific environmental carbon sources may therefore serve as triggers of germination, i.e. to initiate the catabolism of stores such as D-trehalose and the swelling of conidia. Studies carried out using D-glucose analogues identified the structural features of sugars that trigger or support conidial germination. These studies showed that the arrangement of atoms on carbons 3 and 4, on the pyranose ring structure of D-glucose, are essential to serve as a trigger of germination. The trigger step preceeds, and is separate from, the energy generation step that supports the continued outgrowth. Transcriptomic studies found that the most significant changes were associated with the breaking of dormancy. The data also revealed that fermentative metabolism present at the early stages of spore germination is rapidly replaced by respiratory metabolism
Transcriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing
Background
Genome-wide analysis was performed to assess the transcriptional landscape of germinating A. niger conidia using both next generation RNA-sequencing and GeneChips. The metabolism of storage compounds during conidial germination was also examined and compared to the transcript levels from associated genes.
Results
The transcriptome of dormant conidia was shown to be highly differentiated from that of germinating conidia and major changes in response to environmental shift occurred within the first hour of germination. The breaking of dormancy was associated with increased transcript levels of genes involved in the biosynthesis of proteins, RNA turnover and respiratory metabolism. Increased transcript levels of genes involved in metabolism of nitrate at the onset of germination implies its use as a source of nitrogen. The transcriptome of dormant conidia contained a significant component of antisense transcripts that changed during germination.
Conclusion
Dormant conidia contained transcripts of genes involved in fermentation, gluconeogenesis and the glyoxylate cycle. The presence of such transcripts in dormant conidia may indicate the generation of energy from non-carbohydrate substrates during starvation-induced conidiation or for maintenance purposes during dormancy. The immediate onset of metabolism of internal storage compounds after the onset of germination, and the presence of transcripts of relevant genes, suggest that conidia are primed for the onset of germination. For some genes, antisense transcription is regulated in the transition from resting conidia to fully active germinants