96 research outputs found
Calcitonin receptors in GtoPdb v.2023.1
This receptor family comprises a group of receptors for the calcitonin/CGRP family of peptides. The calcitonin (CT), amylin (AMY), calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on CGRP, AM, AMY, and CT receptors [131, 74, 71]) are generated by the genes CALCR (which codes for the CT receptor, CTR) and CALCRL (which codes for the calcitonin receptor-like receptor, CLR, previously known as CRLR). Their function and pharmacology are altered in the presence of RAMPs (receptor activity-modifying proteins), which are single TM domain proteins of ca. 150 amino acids, identified as a family of three members; RAMP1, RAMP2 and RAMP3. There are splice variants of the CTR; these in turn produce variants of AMY receptors [131], some of which can be potently activated by CGRP. The endogenous agonists are the peptides calcitonin, α-CGRP (formerly known as CGRP-I), β-CGRP (formerly known as CGRP-II), amylin (occasionally called islet-amyloid polypeptide, diabetes-associated polypeptide), adrenomedullin and adrenomedullin 2/intermedin. There are species differences in peptide sequences, particularly for the CTs. CTR-stimulating peptide (CRSP) is another member of the family with selectivity for the CTR but it is not expressed in humans [93]. CLR (calcitonin receptor-like receptor) by itself binds no known endogenous ligand, but in the presence of RAMPs it gives receptors for CGRP, adrenomedullin and adrenomedullin 2/intermedin. There are several approved drugs that target this receptor family, such as pramlintide, erenumab, and the "gepant" class of CGRP receptor antagonists. There are also species differences in agonist pharmacology; for example, CGRP displays potent activity at multiple rat and mouse receptors [58, 15]. The summary table only reflects human receptor pharmacology
Structure-activity relationships of the N-terminus of calcitonin gene-related peptide:key roles of alanine-5 and threonine-6 in receptor activation
Background and purpose - The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1-7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3-6 and 8-9, excluding Cys-2 and Cys-7. Experimental approach - CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and Ăź-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor. Key results - Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at Ăź-arrestin translocation was reduced by 9-fold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and Ăź-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor. Conclusions and implications - Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1-7 ring also contribute to agonist activity
The role of ECL2 in CGRP receptor activation: a combined modelling and experimental approach
The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271–294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed.</jats:p
Amylin: Pharmacology, Physiology, and Clinical Potential
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents
Photoaffinity cross-linking and unnatural amino acid mutagenesis reveal insights into calcitonin gene-related peptide binding to the calcitonin receptor-like receptor/receptor activity-modifying protein 1 (CLR/RAMP1) complex
Calcitonin gene-related peptide (CGRP) binds to the complex of the calcitonin receptor-like receptor (CLR) with receptor activity-modifying protein 1 (RAMP1). How CGRP interacts with the transmembrane domain (including the extracellular loops) of this family B receptor remains unclear. In this study, a photoaffinity cross-linker, p-azido l-phenylalanine (azF), was incorporated into CLR, chiefly in the second extracellular loop (ECL2) using genetic code expansion and unnatural amino acid mutagenesis. The method was optimized to ensure efficient photolysis of azF residues near the transmembrane bundle of the receptor. A CGRP analogue modified with fluorescein at position 15 was used for detection of ultraviolet-induced cross-linking. The methodology was verified by confirming the known contacts of CGRP to the extracellular domain of CLR. Within ECL2, the chief contacts were I284 on the loop itself and L291, at the top of the fifth transmembrane helix (TM5). Minor contacts were noted along the lip of ECL2 between S286 and L290 and also with M223 in TM3 and F349 in TM6. Full length molecular models of the bound receptor complex suggest that CGRP sits at the top of the TM bundle, with Thr6 of the peptide making contacts with L291 and H295. I284 is likely to contact Leu12 and Ala13 of CGRP, and Leu16 of CGRP is at the ECL/extracellular domain boundary of CLR. The reduced potency, Emax, and affinity of [Leu16Ala]-human α CGRP are consistent with this model. Contacts between Thr6 of CGRP and H295 may be particularly important for receptor activation
Vasopressin-oxytocin–type signaling is ancient and has a conserved water homeostasis role in euryhaline marine planarians
Vasopressin/oxytocin (VP/OT)–related peptides are essential for mammalian antidiuresis, sociosexual behavior, and reproduction. However, the evolutionary origin of this peptide system is still uncertain. Here, we identify orthologous genes to those for VP/OT in Platyhelminthes, intertidal planarians that have a simple bilaterian body structure but lack a coelom and body-fluid circulatory system. We report a comprehensive characterization of the neuropeptide derived from this VP/OT-type gene, identifying its functional receptor, and name it the “platytocin” system. Our experiments with these euryhaline planarians, living where environmental salinities fluctuate due to evaporation and rainfall, suggest that platytocin functions as an “antidiuretic hormone” and also organizes diverse actions including reproduction and chemosensory-associated behavior. We propose that bilaterians acquired physiological adaptations to amphibious lives by such regulation of the body fluids. This neuropeptide-secreting system clearly became indispensable for life even without the development of a vascular circulatory system or relevant synapses
- …