358 research outputs found

    Microwave Heating of Water, Ice and Saline Solution: Molecular Dynamics Study

    Full text link
    In order to study the heating process of water by the microwaves of 2.5-20GHz frequencies, we have performed molecular dynamics simulations by adopting a non-polarized water model that have fixed point charges on rigid-body molecules. All runs are started from the equilibrated states derived from the Ic_{c} ice with given density and temperature. In the presence of microwaves, the molecules of liquid water exhibit rotational motion whose average phase is delayed from the microwave electric field. Microwave energy is transferred to the kinetic and inter-molecular energies of water, where one third of the absorbed microwave energy is stored as the latter energy. The water in ice phase is scarcely heated by microwaves because of the tight hydrogen-bonded network of water molecules. Addition of small amount of salt to pure water substantially increases the heating rate because of the weakening by defects in the water network due to sloshing large-size negative ions.Comment: 21 pages, 13 figure

    Spectral responses in granular compaction

    Full text link
    The slow compaction of a gently tapped granular packing is reminiscent of the low-temperature dynamics of structural and spin glasses. Here, I probe the dynamical spectrum of granular compaction by measuring a complex (frequency-dependent) volumetric susceptibility χ~v\tilde{\chi}_v. While the packing density ρ\rho displays glass-like slow relaxations (aging) and history-dependence (memory) at low tapping amplitudes, the susceptibility χ~v\tilde{\chi}_v displays very weak aging effects, and its spectrum shows no sign of a rapidly growing timescale. These features place χ~v\tilde{\chi}_v in sharp contrast to its dielectric and magnetic counterparts in structural and spin glasses; instead, χ~v\tilde\chi_v bears close similarities to the complex specific heat of spin glasses. This, I suggest, indicates the glass-like dynamics in granular compaction are governed by statistically rare relaxation processes that become increasingly separated in timescale from the typical relaxations of the system. Finally, I examine the effect of finite system size on the spectrum of compaction dynamics. Starting from the ansatz that low frequency processes correspond to large scale particle rearrangements, I suggest the observed finite size effects are consistent with the suppression of large-scale collective rearrangements in small systems.Comment: 18 pages, 17 figures. Submitted to PR

    Power-law decay in first-order relaxation processes

    Full text link
    Starting from a simple definition of stationary regime in first-order relaxation processes, we obtain that experimental results are to be fitted to a power-law when approaching the stationary limit. On the basis of this result we propose a graphical representation that allows the discrimination between power-law and stretched exponential time decays. Examples of fittings of magnetic, dielectric and simulated relaxation data support the results.Comment: to appear in Phys. Rev. B; 4 figure

    Origin of temperature dependent conductivity of α\alpha-polyvinylidene fluoride

    Full text link
    The conductivity of α\alpha-polyvinylidene fluoride (α\alpha-PVDF) is obtained from dielectric measurements performed in the frequency domain at several temperatures. At temperatures above the glass-transition, the conductivity can be interpreted as an ionic conductivity, which confirms earlier results reported in the literature. Our investigation shows that the observed ionic conductivity is closely related to the amorphous phase of the polymer

    Dielectric relaxation of DNA aqueous solutions

    Full text link
    We report on a detailed characterization of complex dielectric response of Na-DNA aqueous solutions by means of low-frequency dielectric spectroscopy (40 Hz - 110 MHz). Results reveal two broad relaxation modes of strength 20<\Delta\epsilon_LF<100 and 5<\Delta\epsilon_HF<20, centered at 0.5 kHz<\nu_LF<70 kHz and 0.1 MHz<\nu_HF<15 MHz. The characteristic length scale of the LF process, 50<L_LF<750nm, scales with DNA concentration as c_DNA^{-0.29\pm0.04} and is independent of the ionic strength in the low added salt regime. Conversely, the measured length scale of the LF process does not vary with DNA concentration but depends on the ionic strength of the added salt as I_s^{-1} in the high added salt regime. On the other hand, the characteristic length scale of the HF process, 3<L_HF<50 nm, varyes with DNA concentration as c_DNA^{-0.5} for intermediate and large DNA concentrations. At low DNA concentrations and in the low added salt limit the characteristic length scale of the HF process scales as c_DNA^{-0.33}. We put these results in perspective regarding the integrity of the double stranded form of DNA at low salt conditions as well as regarding the role of different types of counterions in different regimes of dielectric dispersion. We argue that the free DNA counterions are primarily active in the HF relaxation, while the condensed counterions play a role only in the LF relaxation. We also suggest theoretical interpretations for all these length scales in the whole regime of DNA and salt concentrations and discuss their ramifications and limitations.Comment: 15 pages, 9 figure

    Experimental search for dynamic heterogeneities in molecular glass formers

    Get PDF
    We have measured the linear dielectric susceptibility of two molecular glass formers close to Tg in order to estimate the size of the dynamically correlated clusters of molecules which are expected to govern the physics of glass formation. This size has been shown to be related to the dynamic dielectric susceptibility dEps(w)/dT (Eps : dielectric susceptibility, T : temperature, w&#61472;: frequency). To allow for an accurate determination of the T derivative, we scanned the interval 192 < T < 232 K every 1 K for glycerol and 159 < T < 179 K every 0.5 K for propylene carbonate. The resolution on T variations was about 1 mK. The result for glycerol is that the number of correlated molecules increases by a factor 3 when T goes from 226 to 195 K. It has been shown that the non-linear susceptibility provides a direct measurement of dynamic correlations. To measure it, we used a standard Lockin technique yielding the third harmonic of the current flowing out of a capacitor. We obtained only an upper limit on the ratio of the third to the first harmonic, due to the non-linear response of standard electronics.Comment: 7 page

    Signs of low frequency dispersions in disordered binary dielectric mixtures (50-50)

    Full text link
    Dielectric relaxation in disordered dielectric mixtures are presented by emphasizing the interfacial polarization. The obtained results coincide with and cause confusion with those of the low frequency dispersion behavior. The considered systems are composed of two phases on two-dimensional square and triangular topological networks. We use the finite element method to calculate the effective dielectric permittivities of randomly generated structures. The dielectric relaxation phenomena together with the dielectric permittivity values at constant frequencies are investigated, and significant differences of the square and triangular topologies are observed. The frequency dependent properties of some of the generated structures are examined. We conclude that the topological disorder may lead to the normal or anomalous low frequency dispersion if the electrical properties of the phases are chosen properly, such that for ``slightly'' {\em reciprocal mixture}--when σ1≫σ2\sigma_1\gg\sigma_2, and Ï”1<Ï”2\epsilon_1<\epsilon_2--normal, and while for ``extreme'' {\em reciprocal mixture}--when σ1≫σ2\sigma_1\gg\sigma_2, and Ï”1â‰ȘÏ”2\epsilon_1\ll\epsilon_2--anomalous low frequency dispersions are obtained. Finally, comparison with experimental data indicates that one can obtain valuable information from simulations when the material properties of the constituents are not available and of importance.Comment: 13 pages, 7 figure

    Out of equilibrium thermal Casimir effect in a model polarizable material

    Get PDF
    Relaxation of the thermal Casimir or van der Waals force for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out of equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. It is found that the spatial dependence of the out of equilibrium force is the same as the equilibrium one but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation to the equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant, with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.Comment: 15 pages RevTex, 4 figure

    Minimal model for beta relaxation in viscous liquids

    Get PDF
    Contrasts between beta relaxation in equilibrium viscous liquids and glasses are rationalized in terms of a double-well potential model with structure-dependent asymmetry, assuming structure is described by a single order parameter. The model is tested for tripropylene glycol where it accounts for the hysteresis of the dielectric beta loss peak frequency and magnitude during cooling and reheating through the glass transition.Comment: Phys. Rev. Lett. (in press

    Transitions/relaxations in polyester adhesive/PET system

    Get PDF
    The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modes’ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics
    • 

    corecore