187 research outputs found
Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity
Periodic incorporation of quantum wells inside a one--dimensional Bragg
structure is shown to enhance coherent coupling of excitons to the
electromagnetic Bloch waves. We demonstrate strong coupling of quantum well
excitons to photonic crystal Bragg modes at the edge of the photonic bandgap,
which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg
polariton branches are in good agreement with the theory and allow
demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure
Operation speed of polariton condensate switches gated by excitons
We present a time-resolved photoluminescence (PL) study in real- and
momentum-space of a polariton condensate switch in a quasi-1D semiconductor
microcavity. The polariton flow across the ridge is gated by excitons inducing
a barrier potential due to repulsive interactions. A study of the device
operation dependence on the power of the pulsed gate beam obtains a
satisfactory compromise for the ON/OFF-signal ratio and -switching time of the
order of 0.3 and ps, respectively. The opposite transition is
governed by the long-lived gate excitons, consequently the OFF/ON-switching
time is ps, limiting the overall operation speed of the device
to GHz. The experimental results are compared to numerical
simulations based on a generalized Gross-Pitaevskii equation, taking into
account incoherent pumping, decay and energy relaxation within the condensate.Comment: 11 pages, 11 figure
Energy relaxation of exciton-polariton condensates in quasi-1D microcavities
We present a time-resolved study of energy relaxation and trapping dynamics
of polariton condensates in a semiconductor microcavity ridge. The combination
of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity
gives rise to profuse quantum phenomena where the repulsive potentials created
by the lasers allow the modulation and control of the polariton flow. We
analyze in detail the dependence of the dynamics on the power of both lasers
and determine the optimum conditions for realizing an all-optical polariton
condensate transistor switch. The experimental results are interpreted in the
light of simulations based on a generalized Gross-Pitaevskii equation,
including incoherent pumping, decay and energy relaxation within the
condensate.Comment: 15 pages, 20 figure
Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity
In a polariton, laser coherent monochromatic light is produced by a low-energy state of the system at the bottom of a polariton ‘trap’, where a condensate of polaritons is formed, requiring no conventional population inversion. Following the recent realization of polariton light-emitting diodes (LEDs) based on GaAs microcavities (MCs) operating up to room temperature, efforts have been directed towards the demonstration of an electrically injected polariton laser. However, until now, low-threshold polariton lasing in GaAs MCs under optical pumping has been reported only at low temperatures. Here, we investigate the temperature dependence of lasing threshold across the border of the strong-to-weak coupling regime transition in high-finesse GaAs MCs under non-resonant optical pumping. Remarkably, we find that although lasing in the strong coupling regime is lost when the temperature is raised from 25 to 70 K, the threshold only doubles, in stark contrast with the expected difference of two orders of magnitude. Our results can be explained by considering temperatureinduced thermalization of carriers to high wavevector states, increasing the reservoir’s overall carrier lifetime, resulting in an order of magnitude higher steady-state carrier density at 70 K under similar pumping conditions
Steady state oscillations of circular currents in concentric polariton condensates
Concentric ring exciton polariton condensates emerging under non-resonant
laser pump in an annular trapping potential support persistent circular
currents of polaritons. The trapping potential is formed by a cylindrical
micropillar etched in a semiconductor microcavity with embedded quantum wells
and a repulsive cloud of optically excited excitons under the pump spot. The
symmetry of the potential is subject to external control via manipulation by
its pump-induced component. In the manuscript, we demonstrate excitation of
concentric ring polariton current states with predetermined vorticity which we
trace using interferometry measurements with a spherical reference wave. We
also observe the polariton condensate dynamically changing its vorticity during
observation, which results in pairs of fork-like dislocations on the
time-averaged interferogram coexisting with azimuthally homogeneous
photoluminescence distribution in the micropillar
Dynamics of a polariton condensate transistor switch
We present a time-resolved study of the logical operation of a polariton
condensate transistor switch. Creating a polariton condensate (source) in a
GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the
polariton propagation towards a collector, at the ridge edge, is controlled by
a second weak pulse (gate), located between the source and the collector. The
experimental results are interpreted in the light of simulations based on the
generalized Gross-Pitaevskii equation, including incoherent pumping, decay and
energy relaxation within the condensate.Comment: 4 pages, 2 figure
- …