31 research outputs found

    Highly porous chitosan beads embedded with silver-graphene oxide nanocomposites for antibacterial application

    Get PDF
    Incorporation of silver nanomaterial into polymer matrix can further accomplished their potential usage in real life applications. In our previous study, silver nanoparticles (AgNPs) and silver-graphene oxide nanocomposites (AgGO) were prepared via a rapid microwave-assisted method. Hereby, the as-synthesized AgNPs or AgGO was dispersed in a chitosan solution. Subsequently, the resultant mixture solution was further coagulated in a coagulation bath containing sodium hydroxide via a neutralization process. This resulted in the formation of spherical-shaped chitosan beads. The structure of the beads showed that the chitosan beads embedded with AgGO exhibited a more porous structure as compared to the plain chitosan beads. Furthermore, the chitosan beads containing AgNPs or AgGO were tested for their antibacterial activity against Escherichia coli and Staphylococcus aureus. The antibacterial results indicated that the silver nanomaterial contained chitosan beads could effectively inhibit the growth of both E. coli and S. aureus as compared to the bare chitosan beads. The produced chitosan nanocomposite envisioned that can be potentially employed for water disinfection purpose

    As-spun bio-novolac fibre morphological study based on resin’s physico-chemical properties

    Get PDF
    Bio-novolac fibre made from phenol-formaldehyde derived oil palm empty fruit bunch (EFB) was produced using electrospinning method. The bio-novolac phenol-formaldehyde was prepared via liquefaction and resinification at two different molar ratios of formaldehyde to liquefied EFB (LEFB) (F:LEFB = 0.5:1 and 0.8:1). Electrospinning was applied to the bio-novolac phenol-formaldehyde (BPF) in order to form smooth and thin as-spun fibre. The BPF was electrospun at 15 kV and 15 cm distance between needle and collector at a flow rate of 0.5 mL/h. At lower molecular weight of BPF resin, beads formation was observed. The addition of poly(vinyl) butyral (Mw = 175,000 - 250,000) has improved the fibre formation with lesser beads hence produced more fibre. Polymer solution with higher molecular weight produced better quality fibre

    Preparation and characterization of Fe3O4/regenerated cellulose membrane

    Get PDF
    In this study, magnetic cellulose membranes (MCM) have been prepared by using cotton linter as cellulose source and NaOH/urea as cellulose solvent at different magnetite content. Cellulose was dissolved in pre-cooled NaOH/urea solvent at -13°C to form cellulose solution. The cellulose solution then was mix with magnetite (Fe3O4) nanoparticles synthesized via co-precipitation method of Fe2+ and Fe3+ in the presence of sodium hydroxide (NaOH) to form MCM. The MCMs formed at different percentage of Fe3O4 i.e., 10, 20 and 30%. Analysis from vibrating sample magnetometer (VSM) shows that the saturation magnetization of the MCM increase as the percentages of Fe3O4 nanoparticles increased. However, the addition of Fe3O4 nanoparticles in the regenerated cellulose membrane has decreased the crystallinity index of MCM. The surface morphology of the MCM showed that the Fe3O4 nanoparticles were dispersed in the pore of the membrane. Tensile test showed decreasing in the tensile strength of the cellulose membrane with the addition of Fe3O4 nanoparticle

    3D Printed Functionalized Nanocellulose as an Adsorbent in Batch and Fixed-Bed Systems

    Get PDF
    Nanocellulose, a refined form of cellulose, can be further functionalized on surface-active sites, with a catalyst as a regenerative agent. Newly developed adsorbents are expected to have the characteristics of good and rapid adsorption performance and regeneration properties with flexible structure using 3D printing technology. In this work, the adsorption performance of 3D printed functionalized nanocellulose was investigated using batch and fixed-bed column adsorption. Kinetics adsorption studies were divided into different adsorption models, with the pseudo-second order model showing a better correlation coefficient than the pseudo-first order and intraparticle diffusion models. The Langmuir and Thomas models were used to calculate the adsorption performance of batch and fixed-bed columns. Given the catalytic activity of Fenton oxidation, the fixed-bed column was regenerated up to five adsorption-desorption cycles, suggesting satisfactory performance of the column, with a slightly reduced adsorption capacit

    Membran selulosa kenaf terjana semula daripada larutan akues NaOH/urea yang digumpal menggunakan asid sulfurik

    Get PDF
    Membran selulosa terjana semula (MS) daripada pulpa teras kenaf telah berjaya dihasilkan menggunakan kaedah pra penyejukan dan digumpal menggunakan larutan asid sulfurik. MS disediakan daripada pelarutan selulosa kenaf dalam larutan akues NaOH/urea dan larutan selulosa seterusnya digumpal dengan H2SO4 pada kepekatan 5-12 peratus berat (% bt.) selama 1-10 min. Pengaruh kepekatan penggumpal H2SO4 dan masa penggumpalan ke atas struktur, saiz liang, sifat mekanik dan ketelusan cahaya MS telah dikaji menggunakan pembelauan sinar-X (XRD), imbasan mikroskop elektron tekanan boleh ubah (VPSEM), penguji regangan dan spektrofotometer ultra-violet sinar tampak (UV-vis). Keputusan VPSEM menunjukkan perubahan saiz liang membran bergantung kepada kepekatan larutan penggumpal H2SO4, manakala masa penggumpalan tidak mempengaruhi saiz liang membran. Membran yang direndam dengan larutan penggumpal pada kepekatan 10 % bt. dan masa pembekuan yang sederhana iaitu 5 min menunjukkan sifat mekanik yang lebih baik dengan nilai kekuatan regangan masing-masing 41.9 dan 43.5 MPa. Oleh itu, kajian ini dapat memberikan maklumat mengenai penyediaan MS dengan pelbagai saiz liang dan sifat mekanik dengan pengubahsuaian kepekatan dan masa penggumpalan

    Physico-mechanical, chemical composition, thermal degradation and crystallinity of oil palm empty fruit bunch, kenaf and polypropylene fibres: a comparatives study

    Get PDF
    The physico-mechanical and chemical properties of enzyme retting kenaf and shredded empty fruit bunch of oil palm fibres (EFB) were analyzed by chemical extraction, microscopic, spectroscopic, thermal and X-ray diffraction method. Polypropylene (PP), a petroleum based fibre, was also included to compare the properties of synthetic fibre with natural fibres. Chemical extraction analysis showed that cellulose was the major component in both kenaf and EFB fibres which are 54% and 41.34%, respectively. Silica content of EFB was 5.29% higher than kenaf that was 2.21%. The result of thermogravimetric analysis showed that kenaf has higher thermal decomposition rate compared to EFB fibre. However, the residue for EFB fibre was higher than kenaf due to higher content in inorganic materials. The residual content of PP fibre was only 1.13% which was lower than the natural fibre. The diameter of EFB fibre bundle was 341.7 μm that was three times higher than kenaf. Microscopy study demonstrated that EFB surface was rough, porous and embedded with silica while kenaf showed smooth surface with small pith. Higher porosity in EFB was due to the lower fibre density that was 1.5 kg/cm3 compared to kenaf that was 1.62 kg/cm3. Kenaf has illustrated significant higher tensile strength (426.4 MPa) than EFB (150 MPa) and this result is in parallel to the pattern of the crystalline value for both fibres, 65% and 50.58%, respectively

    Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin

    Get PDF
    This study explores the potential of using nanocellulose extracted from oil palm empty fruit bunch (OPEFB) as a biomaterial ink for 3D printing. The research focuses on using nanocellulose hydrogels for the controlled uptake and release of proteins, with the specific protein solution being Bovine Serum Albumin (BSA). To provide a suitable material for the bioprinting process, the study examines the characteristics and properties of the printed hydrogels through various analyses, such as morphology, functional group, crystallinity, and compression test. Several parameters, such as initial concentration, temperature, and the presence of calcium chloride as an additional crosslinker, affect the protein uptake and release capabilities of the hydrogel. The study is important for biomedicine as it explores the behavior of protein uptake and release using nanocellulose and 3D printing and can serve as a preliminary study for using hydrogels in biological materials or living cells

    Oleophilicity and oil-water separation by reduced graphene oxide grafted oil palm empty fruit bunch fibres

    Get PDF
    Absorption is one of the effective, simple and economical methods to remove oil from oily wastewater. The most widely used approach is to utilize lignocellulosic biomass as oil absorbent. However, the hygroscopic of cellulose have limited the oil-water separation capability of lignocellulosic fibers. In this study, the surface functionality of oil palm empty fruit bunch (EFB) fibers was slightly altered by grafting reduced graphene oxide (rGO). The modified EFB fibers show a distinct morphological and chemical characteristics changes as the surface of fibers has been coated with rGO. This was supported by FTIR analysis with the diminishing peak of hydroxyl group region of EFB fibers. While the surface modification on EFB fibers shows a diminution of a hydrophilic characteristic of 131.6% water absorption in comparison with 268.9% of untreated EFB fibers. Moreover, modified fibers demonstrated an oil-water separation increment as well, as it shows 89% of oil uptake and improved ~17 times of oil selectivity in oil-water emulsion than untreated EFB fibers

    Investigation with gifted students in learning physics concept based on cognitive structure

    Get PDF
    Physics concept is an understanding of natural occurrence. Physics is one of the natural science subjects that involves the study of matter and motion through space and time, along with related concepts. The concepts of physics explained everything involving the environment and human relation that happened in our daily life. Physics is one of the toughest subjects. Many students have difficulty to understand the subject properly. The factor of difficulty in learning physics concept come from many aspects, which is subject matter, materials for learning, the environment in class, and teaching style. Therefore, this study aims at investigating the main factor affecting the understanding of student performance in physics subject. This study has been done by given question paper that is designed based on taxonomy bloom. The question paper consists of 10 questions divided into three stages of taxonomy bloom, which are C1 (remembering), C2 (understanding), and C3 (applying). The test has been conducted among 17 years old students in Kolej PERMATA Insan. The result of the test has been analyzed. Based on the test that has been held, the results showed that most students did not reach the minimum mark of for the three stages in taxonomy bloom mainly stage C3 questions that apply the physics concept in daily life. The results from the test showed that physic is a tough subject to be learned

    Transparent and Printable Regenerated Kenaf Cellulose/PVA Film

    No full text
    Cellulose was extracted from kenaf core powder by a series of bleaching processes and subsequently dissolved using an alkaline LiOH/urea solvent at low temperatures. The produced cellulose solution was mixed with polyvinyl alcohol (PVA) with different ratios of cellulose/PVA and coagulated to produce regenerated transparent films. The films were then air dried to produce transparent film. The effects of PVA content on tensile index, transparency, pore size, and printability of the films were studied. A slight reduction of 7% on the tensile index of the film was observed when the content of PVA increased to 10%. Nevertheless, the addition of 10% of PVA increased the porosity of the regenerated cellulose/PVA film, while the transparency of the film increased by 10%. The films were color-printed using a laser printer and can be recycled, in which the printed ink can be removed easily from the films with higher amount of PVA content. In addition, the films can be reprinted repeatedly several times
    corecore