1,206 research outputs found

    Translation research: from accurate diagnosis to appropriate treatment

    Get PDF
    This review article focuses on the various aspects of translational research, where research on human subjects can ultimately enhance the diagnosis and treatment of future patients. While we will use specific examples relating to the asbestos related cancer mesothelioma, it should be stressed that the general approach outlined throughout this review is readily applicable to other diseases with an underlying molecular basis. Through the integration of molecular-based technologies, systematic tissue procurement and medical informatics, we now have the ability to identify clinically applicable "genotype"-"phenotype" associations across cohorts of patients that can rapidly be translated into useful diagnostic and treatment strategies. This review will touch on the various steps in the translational pipeline, and highlight some of the most essential elements as well as possible roadblocks that can impact success of the program. Critical issues with regard to Institutional Review Board (IRB) and Health Insurance Portability and Accountability Act (HIPAA) compliance, data standardization, sample procurement, quality control (QC), quality assurance (QA), data analysis, preclinical models and clinical trials are addressed. The various facets of the translational pipeline have been incorporated into a fully integrated computational system, appropriately named Dx2Tx. This system readily allows for the identification of new diagnostic tests, the discovery of biomarkers and drugable targets, and prediction of optimal treatments based upon the underlying molecular basis of the disease

    Solvable 2D superconductors with l-wave pairing

    Full text link
    We analyze a family of two-dimensional BCS Hamiltonians with general l-wave pairing interactions, classifying the models in this family that are Bethe-ansatz solvable in the finite-size regime. We show that these solutions are characterized by nontrivial winding numbers, associated with topological phases, in some part of the corresponding phase diagrams. By means of a comparative study, we demonstrate benefits and limitations of the mean-field approximation, which is the standard approach in the limit of a large number of particles. The mean-field analysis also allows to extend part of the results beyond integrability, clarifying the peculiarities associable with the integrability itself.Comment: 9 pages, 1 figur

    Fra-1 governs cell migration via modulation of CD44 expression in human mesotheliomas

    Get PDF
    Silencing of Fra-1, a component of the dimeric transcription factor, activator protein-1 (AP-1), inhibits mRNA expression of c-met and cd44 in rat mesothelioma cells and is causally linked to maintenance of the transformed phenotype. However, the mechanisms of Fra-1 regulation and Fra-1 regulated gene expression in human malignant mesothelioma (MM) are unclear. We first show in a panel of human MM cells that Fra-1 mRNA expression in MM is complex and regulated by extracellular signal-regulated kinase (ERK1, ERK2), Src, and phosphatidyl-inositol-3-kinase (PI3K) pathways in a tumor-specific fashion. Cell lines with PI3K-dependent Fra-1 expression were SV40 positive and expressed the lowest basal Fra-1 levels. Levels of Fra-1 expression correlated with amounts of CD44 expression that were greater in simian virus 40 negative (SV40-) MM cells. Using dominant negative (dn), short hairpin (sh) and small interference (si) RNA constructs, we next demonstrate that expression of CD44, the principal hyaluronic receptor in MMs, correlates with Fra-expression in both simian virus 40 positive (SV40+) and SV40- MMs. Moreover, both Fra-1 and CD44 expression are linked to cell migration in SV40- MM cells. Lastly, in contrast to normal lung tissue, tissue microarrays revealed that Fra-1 was expressed in 33 of 34 human MMs, and that all CD44+ tumors were SV40-. These results suggest that Fra-1 is associated with cell migration in human MMs and that Fra-1 modulation of CD44 may govern migration of selected MMs

    Biomolecular and clinical practice in malignant pleural mesothelioma and lung cancer: what thoracic surgeons should know†

    Get PDF
    Today, molecular-profile-directed therapy is a guiding principle of modern thoracic oncology. The knowledge of new biomolecular technology applied to the diagnosis, prognosis, and treatment of lung cancer and mesothelioma should be part of the 21st century thoracic surgeons' professional competence. The European Society of Thoracic Surgeons (ESTS) Biology Club aims at providing a comprehensive insight into the basic biology of the diseases we are treating. During the 2013 ESTS Annual Meeting, different experts of the field presented the current knowledge about diagnostic and prognostic biomarkers in malignant pleural mesothelioma including new perspectives as well as the role and potential application of microRNA and genomic sequencing for lung cancer, which are summarized in the present articl

    Unlocking biomarker discovery: Large scale application of aptamer proteomic technology for early detection of lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer deaths, because ~84% of cases are diagnosed at an advanced stage. Worldwide in 2008, ~1.5 million people were diagnosed and ~1.3 million died – a survival rate unchanged since 1960. However, patients diagnosed at an early stage and have surgery experience an 86% overall 5-year survival. New diagnostics are therefore needed to identify lung cancer at this stage. Here we present the first large scale clinical use of aptamers to discover blood protein biomarkers in disease with our breakthrough proteomic technology. This multi-center case-control study was conducted in archived samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC) in long-term tobacco-exposed populations. We measured >800 proteins in 15uL of serum, identified 44 candidate biomarkers, and developed a 12-protein panel that distinguished NSCLC from controls with 91% sensitivity and 84% specificity in a training set and 89% sensitivity and 83% specificity in a blinded, independent verification set. Performance was similar for early and late stage NSCLC. This is a significant advance in proteomics in an area of high clinical need

    A simple method for generating full length cDNA from low abundance partial genomic clones

    Get PDF
    BACKGROUND: PCR amplification of target molecules involves sequence specific primers that flank the region to be amplified. While this technique is generally routine, its applicability may not be sufficient to generate a desired target molecule from two separate regions involving intron /exon boundaries. For these situations, the generation of full-length complementary DNAs from two partial genomic clones becomes necessary for the family of low abundance genes. RESULTS: The first approach we used for the isolation of full-length cDNA from two known genomic clones of Hox genes was based on fusion PCR. Here we describe a simple and efficient method of amplification for homeobox D13 (HOXD13) full length cDNA from two partial genomic clones. Specific 5' and 3' untranslated region (UTR) primer pairs and website program (primer3_www.cgv0.2) were key steps involved in this process. CONCLUSIONS: We have devised a simple, rapid and easy method for generating cDNA clone from genomic sequences. The full length HOXD13 clone (1.1 kb) generated with this technique was confirmed by sequence analysis. This simple approach can be utilized to generate full-length cDNA clones from available partial genomic sequences

    Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FUS1/TUSC2 is a novel tumor suppressor located in the critical 3p21.3 chromosomal region frequently deleted in multiple cancers. We previously showed that Tusc2-deficient mice display a complex immuno-inflammatory phenotype with a predisposition to cancer. The goal of this study was to analyze possible involvement of TUSC2 in malignant pleural mesothelioma (MPM) - an aggressive inflammatory cancer associated with exposure to asbestos.</p> <p>Methods</p> <p>TUSC2 insufficiency in clinical specimens of MPM was assessed via RT-PCR (mRNA level), Representational Oligonucleotide Microarray Analysis (DNA level), and immunohistochemical evaluation (protein level). A possible link between TUSC2 expression and exposure to asbestos was studied using asbestos-treated mesothelial cells and ROS (reactive oxygen species) scavengers. Transcripional effects of TUSC2 in MPM were assessed through expression array analysis of TUSC2-transfected MPM cells.</p> <p>Results</p> <p>Expression of TUSC2 was downregulated in ~84% of MM specimens while loss of TUSC2-containing 3p21.3 region observed in ~36% of MPMs including stage 1 tumors. Exposure to asbestos led to a transcriptional suppression of TUSC2, which we found to be ROS-dependent. Expression array studies showed that TUSC2 activates transcription of multiple genes with tumor suppressor properties and down-regulates pro-tumorigenic genes, thus supporting its role as a tumor suppressor. In agreement with our knockout model, TUSC2 up-regulated IL-15 and also modulated more than 40 other genes (~20% of total TUSC2-affected genes) associated with immune system. Among these genes, we identified CD24 and CD274, key immunoreceptors that regulate immunogenic T and B cells and play important roles in systemic autoimmune diseases. Finally, clinical significance of TUSC2 transcriptional effects was validated on the expression array data produced previously on clinical specimens of MPM. In this analysis, 42 TUSC2 targets proved to be concordantly modulated in MM serving as disease discriminators.</p> <p>Conclusion</p> <p>Our data support immuno-therapeutic potential of TUSC2, define its targets, and underscore its importance as a transcriptional stimulator of anti-tumorigenic pathways.</p

    Extrapleural pneumonectomy versus pleurectomy/decortication in the surgical management of malignant pleural mesothelioma: Results in 663 patients

    Get PDF
    ObjectiveThe optimal procedure for resection of malignant pleural mesothelioma is controversial, partly because previous analyses include small numbers of patients. We performed a multi-institutional study to increase statistical power to detect significant differences in outcome between extrapleural pneumonectomy and pleurectomy/decortication.MethodsPatients with malignant pleural mesothelioma who underwent extrapleural pneumonectomy or pleurectomy/decortication at 3 institutions were identified. Survival and prognostic factors were analyzed by the Kaplan–Meier method, log-rank test, and Cox proportional hazards analysis.ResultsFrom 1990 to 2006, 663 consecutive patients (538 men and 125 women) underwent resection. The median age was 63 years (range, 26–93 years). The operative mortality was 7% for extrapleural pneumonectomy (n = 27/385) and 4% for pleurectomy/decortication (n = 13/278). Significant survival differences were seen for American Joint Committee on Cancer stages 1 to 4 (P < .001), epithelioid versus non-epithelioid histology (P < .001), extrapleural pneumonectomy versus pleurectomy/decortication (P < .001), multimodality therapy versus surgery alone (P < .001), and gender (P < .001). Multivariate analysis demonstrated a hazard rate of 1.4 for extrapleural pneumonectomy (P < .001) controlling for stage, histology, gender, and multimodality therapy.ConclusionPatients who underwent pleurectomy/decortication had a better survival than those who underwent extrapleural pneumonectomy; however, the reasons are multifactorial and subject to selection bias. At present, the choice of resection should be tailored to the extent of disease, patient comorbidities, and type of multimodality therapy planned
    • …
    corecore