61 research outputs found

    Fabrication and Control of Magnetic Pd,Fe Thin Film Heterostructures.

    Full text link
    The goal of this dissertation research is to investigate the use of multiferroic (ferroelectric- ferromagnetic) thin-film interfaces to control the magnetization in materials of interest for perpendicular recording. We explore the relationship between magnetization and structure in thin films of Fe/Pd compounds deposited onto ferroelectric BaTiO3 substrates. Utilizing magnetostrictive coupling, the magnetism of a magnetic film was controlled by the epitaxial strain at the film/substrate interface. BaTiO3 is particularly favorable as it develops a significant elongation along the tetragonal c-axis as a result of symmetry breaking at the cubic to tetragonal phase transition. A novel aspect of the work is to tune the Curie point of the ferromagnetic transition to match the ferroelectric Curie point of the substrate, so that the magnetostrictive effect is maximized. This is achieved by alloying Fe with Pd to produce a Pd3Fe compound. We report for the first time, the elastic control of the perpendicular magnetic anisotropy of Palladium-Iron (Pd,Fe) films deposited onto a barium-titanate (BaTiO3) (100) substrate. Using Magneto-optic Kerr Effect magnetometry, we observed the behavior of the magnetization through the tetragonal-to-cubic phase transition of the BaTiO3 substrate. We found that such films exhibited in-plane magnetization reversal below the T-C transition temperature, and out-of-plane magnetization reversal above the transition. This change in behavior demonstrates the elastic control of the perpendicular magnetic anisotropy of the deposited Pd,Fe film. In addition, we grew an ordered FePd3 film on SrTiO3 using the inter-diffusion of an Fe/Pd multilayer heterostructure. Each layer was deposited using Ultra-High Vacuum deposition. Utilizing in-situ RHEED (Reflection High Energy Electron Diffraction), we observed that each deposited layer was both ordered and exhibited the crystalline structure of the bulk material. Once deposited, the multi-layer heterostructure was heated above the FePd3_{3} formation temperature. Upon heating, the RHEED pattern began to exhibit the crystalline structure of FePd3. Using X-ray Diffraction analysis and MOKE magnetometry, we found that the epitaxial film consisted primarily of FePd3. This example of atomic layer epitaxy of Fe, Pd alloys represents a successful approach to forming high quality magnetic heterostructures on perovskites with excellent control over their composition and structural ordering.PhDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120869/1/reneehar_1.pd

    Template Language & Model Procedures for Seeking Permission to Share Data

    No full text

    IRBs and Best Practices for Ethical Data Sharing

    No full text
    Materials associated with 2017-07-30 sessio

    Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    The ALICE Collaboration has made the first measurement at the LHC of J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at sNN=2.76 TeV. The J/ψ is identified via its dimuon decay in the forward rapidity region with the muon spectrometer for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 55 μb−1. The cross section for coherent J/ψ production in the rapidity interval −3.6<y<−2.6 is measured to be dσJ/ψcoh/dy=1.00±0.18(stat)−0.26+0.24(syst) mb. The result is compared to theoretical models for coherent J/ψ production and found to be in good agreement with those models which include nuclear gluon shadowing

    Long-range angular correlations of π, K and p in p–Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    No full text
    Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon--nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3 < pTp_T < 4 GeV/c. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |ηlab\eta_{lab}| < 0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pTp_T and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2pv_2^p, is observed to be smaller than that for pions, v2πv_2^\pi, up to about pTp_T = 2 GeV/c. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2pv_2^p is found to be smaller at low pTp_T and larger at higher pTp_T than v2πv_2^\pi, with a crossing occurring at about 2 GeV. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3<pT<40.3 < p_{\rm T} < 4 GeV/cc. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range ηlab<0.8|\eta_{\rm lab}|<0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pTp_{\rm T} and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2pv_2^p, is observed to be smaller than that for pions, v2πv_2^\pi, up to about pT=2p_{\rm T} = 2 GeV/cc. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2pv_2^p is found to be smaller at low pTp_{\rm T} and larger at higher pTp_{\rm T} than v2piv_2^pi, with a crossing occurring at about 2 GeV. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3<pT<4 GeV/c . The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |ηlab|<0.8 . Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pT and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2p , is observed to be smaller than that for pions, v2π , up to about pT=2 GeV/c . To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2p is found to be smaller at low pT and larger at higher pT than v2π , with a crossing occurring at about 2 GeV/c . This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive Υ(1S) and Υ(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the Υ(1S) and Υ(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of Υ(1S). A suppression of the inclusive Υ(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects

    Coherent ψ(2S) photo-production in ultra-peripheral PbPb collisions at √sNN=2.76 TeV

    No full text
    We have performed the first measurement of the coherent ψ(2S) photo-production cross section in ultra-peripheral PbPb collisions at the LHC. This charmonium excited state is reconstructed via the ψ(2S)→l+l− and ψ(2S)→J/ψπ+π− decays, where the J/ψ decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 μb−1. The cross section for coherent ψ(2S) production in the rapidity interval −0.9<y<0.9 is dσψ(2S)coh/dy=0.83±0.19(stat+syst) mb. The ψ(2S) to J/ψ coherent cross section ratio is 0.34−0.07+0.08(stat+syst). The obtained results are compared to predictions from theoretical models

    Corrigendum to 'Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV' [Phys. Lett. B 728 (2014) 216-227]

    No full text

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    We report on the production of inclusive ϒ (1S) and ϒ (2S) in p–Pb collisions at sNN=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward ( −4.46<ycms<−2.96 ) and forward ( 2.03<ycms<3.53 ) rapidity down to zero transverse momentum. The production cross sections of the ϒ (1S) and ϒ (2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of ϒ (1S). A suppression of the inclusive ϒ (1S) yield in p–Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon–nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_NN} = 5.02 TeV with ALICE at LHC

    No full text
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < pT,assoc<pT,trigp_{T,assoc} < p_{T,trig} < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |η| < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p–Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non- jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton–parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p–Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon–nucleon collisions estimated with a Glauber Monte-Carlo simulation.Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7<pT,assoc<pT,trig<5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |η|<0.9 . The near-side long-range pseudorapidity correlations observed in high-multiplicity p–Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton–parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p–Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon–nucleon collisions estimated with a Glauber Monte-Carlo simulation.Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation
    corecore