22 research outputs found

    The Human Phenotype Ontology in 2024: phenotypes around the world

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Recovery of adriamycin induced mitochondrial dysfunction in liver by selenium

    No full text
    Adriamycin (ADR) is a chemotherapeutic drug. Its toxicities may associate with mitochondriopathy. Selenium (Se) is a trace element for essential intracellular antioxidant enzymes. However, there is lack of data related to the effect of selenium on the liver tissue of ADR-induced mitochondrial dysfunction. The study was to investigate whether Se could restore mitochondrial dysfunction of liver-exposed ADR. Rats were divided into four groups as a control, ADR, Se, co-treated ADR with Se groups. The biochemical measurements of the liver were made in mitochondrial and cytosol. ATP level and mitochondria membrane potential (MMP) were measured. Total oxidant (TOS), total antioxidant (TAS) status were determined and oxidative stress index (OSI) was calculated by using TOS and TAS. ADR increased TOS in mitochondria and also oxidative stress in mitochondria. ADR sligtly decreased MMP, and ATP level. Partial recovery of MMP by Se was able to elevate the ATP production in cotreatment of ADR with Se. TOS in mitochondria and cytosol was diminished, as well as OSI. We concluded that selenium could potentially be used against oxidative stress induced by ADR in liver, resulting from the restoration of MMP and ATP production and prevention of mitochondrial damage in vivo
    corecore