59,199 research outputs found
Nearly-logarithmic decay in the colloidal hard-sphere system
Nearly-logarithmic decay is identified in the data for the mean-squared
displacement of the colloidal hard-sphere system at the liquid-glass transition
[v. Megen et. al, Phys. Rev. E 58, 6073(1998)]. The solutions of mode-coupling
theory for the microscopic equations of motion fit the experimental data well.
Based on these equations, the nearly-logarithmic decay is explained as the
equivalent of a beta-peak phenomenon, a manifestation of the critical
relaxation when the coupling between of the probe variable and the density
fluctuations is strong. In an asymptotic expansion, a Cole-Cole formula
including corrections is derived from the microscopic equations of motion,
which describes the experimental data for three decades in time.Comment: 4 pages, 3 figure
Changes in Aphid Host Plant Diet Influence the Small-RNA Expression Profiles of Its Obligate Nutritional Symbiont, Buchnera.
Plants are a difficult food resource to use, and herbivorous insects have evolved a variety of mechanisms that allow them to fully exploit this poor nutritional resource. One such mechanism is the maintenance of bacterial symbionts that aid in host plant feeding and development. The majority of these intracellular symbionts have highly eroded genomes that lack many key regulatory genes; consequently, it is unclear if these symbionts can respond to changes in the insect's diet to facilitate host plant use. There is emerging evidence that symbionts with highly eroded genomes express small RNAs (sRNAs), some of which potentially regulate gene expression. In this study, we sought to determine if the reduced genome of the nutritional symbiont (Buchnera) in the pea aphid responds to changes in the aphid's host plant diet. Using transcriptome sequencing (RNA-seq), Buchnera sRNA expression profiles were characterized within two Buchnera life stages when pea aphids fed on either alfalfa or fava bean. Overall, this study demonstrates that Buchnera sRNA expression changes not only with life stage but also with changes in aphid host plant diet. Of the 321 sRNAs characterized in this study, 47% were previously identified and 22% showed evidence of conservation in two or more Buchnera taxa. Functionally, 13 differentially expressed sRNAs were predicted to target genes related to pathways involved in essential amino acid biosynthesis. Overall, results from this study reveal that host plant diet influences the expression of conserved and lineage-specific sRNAs in Buchnera and that these sRNAs display distinct host plant-specific expression profiles among biological replicates.IMPORTANCE In general, the genomes of intracellular bacterial symbionts are reduced compared to those of free-living relatives and lack many key regulatory genes. Many of these reduced genomes belong to obligate mutualists of insects that feed on a diet that is deficient in essential nutrients, such as essential amino acids. It is unclear if these symbionts respond with their host to changes in insect diet, because of their reduced regulatory capacity. Emerging evidence suggests that these symbionts express small RNAs (sRNAs) that regulate gene expression at the posttranscriptional level. Therefore, in this study, we sought to determine if the reduced genome of the nutritional symbiont Buchnera in the pea aphid responds to changes in the aphid's host plant diet. This study demonstrates for the first time that Buchnera sRNAs, some conserved in two or more Buchnera lineages, are differentially expressed when aphids feed on different plant species and potentially target genes within essential amino acid biosynthesis pathways
Thermal anomalies in membrane properties
Anomalities in water and aqueous systems, and temperature effects on membrane
Null boundary controllability of a 1-dimensional heat equation with an internal point mass
We consider a linear hybrid system composed by two rods of equal length
connected by a point mass. We show that the system is null controllable with
Dirichlet and Neumann controls. The results are based on a careful spectral
spectral analysis together with the moment method.Comment: 12 pages, typos corrected, added references, matches version to be
submitted to Systems and Control Letter
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD) Volume 7: IPAD benefits and impact
The potential benefits, impact and spinoff of IPAD technology are described. The benefits are projected from a flowtime and labor cost analysis of the design process and a study of the flowtime and labor cost savings being experienced with existing integrated systems. Benefits in terms of designer productivity, company effectiveness, and IPAD as a national resource are developed. A description is given of the potential impact of information handling as an IPAD technology, upon task and organization structure and people who use IPAD. Spinoff of IPAD technology to nonaerospace industries is discussed. The results of a personal survey made of aerospace, nonaerospace, government and university sources are given
Application of automatic vehicle location in law enforcement: An introductory planning guide
A set of planning guidelines for the application of automatic vehicle location (AVL) to law enforcement is presented. Some essential characteristics and applications of AVL are outlined; systems in the operational or planning phases are discussed. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. A detailed description of a typical law enforcement AVL system, and a list of vendor sources are given in appendixes
Scaling behavior in the dynamics of a supercooled Lennard-Jones mixture
We present the results of a large scale molecular dynamics computer
simulation of a binary, supercooled Lennard-Jones fluid. At low temperatures
and intermediate times the time dependence of the intermediate scattering
function is well described by a von Schweidler law. The von Schweidler exponent
is independent of temperature and depends only weakly on the type of
correlator. For long times the correlation functions show a Kohlrausch behavior
with an exponent that is independent of temperature. This dynamical
behavior is in accordance with the mode-coupling theory of supercooled liquids.Comment: 6 pages, RevTex, three postscript figures available on request,
MZ-Physics-10
Relaxation in a glassy binary mixture: Mode-coupling-like power laws, dynamic heterogeneity and a new non-Gaussian parameter
We examine the relaxation of the Kob-Andersen Lennard-Jones binary mixture
using Brownian dynamics computer simulations. We find that in accordance with
mode-coupling theory the self-diffusion coefficient and the relaxation time
show power-law dependence on temperature. However, different mode-coupling
temperatures and power laws can be obtained from the simulation data depending
on the range of temperatures chosen for the power-law fits. The temperature
that is commonly reported as this system's mode-coupling transition
temperature, in addition to being obtained from a power law fit, is a crossover
temperature at which there is a change in the dynamics from the high
temperature homogeneous, diffusive relaxation to a heterogeneous, hopping-like
motion. The hopping-like motion is evident in the probability distributions of
the logarithm of single-particle displacements: approaching the commonly
reported mode-coupling temperature these distributions start exhibiting two
peaks. Notably, the temperature at which the hopping-like motion appears for
the smaller particles is slightly higher than that at which the hopping-like
motion appears for the larger ones. We define and calculate a new non-Gaussian
parameter whose maximum occurs approximately at the time at which the two peaks
in the probability distribution of the logarithm of displacements are most
evident.Comment: Submitted for publication in Phys. Rev.
Attack of \u3ci\u3eUrophora Quadrifasciata\u3c/i\u3e (Meig.) (Diiptera: Tephritidae) A Biological Control Agent for Spotted Knapweed (\u3ci\u3eCentaurea Maculosa\u3c/i\u3e Lamarck) and Diffuse Knapweed (\u3ci\u3eC. Diffusa\u3c/i\u3e Lamarck) (Asteraceae) by a Parasitoid, \u3ci\u3ePteromalus\u3c/i\u3e Sp. (Hymenoptera: Pteromalidae) in Michigan
Urophora quadrifasciata (Meig.) a seedhead fly released in North America for biological control of Centaurea maculosa and C. diffusa is parasitized by a Pteromalus sp. Parasitism up to 60% of U. quadrifasciata was found in samples of seed heads of C. maculosa and C. diffusa collected from 54 of the 59 counties sampled in Michigan and in one sample of C. maculosa seed heads from Hennepin County, Minnesota. Parasitism of U. quadrifasciata has rarely been reported
- …