1,110 research outputs found

    Dark energy and dark matter from cosmological observations

    Full text link
    The present status of our knowledge about the dark matter and dark energy is reviewed. Bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.Comment: 12 pages, 4 figures, to appear in Lepton-Photon 2005 proceedings, added figure and typos correcte

    New cosmological mass limit on thermal relic axions

    Get PDF
    Observations of the cosmological large-scale structure provide well-established neutrino mass limits. We extend this argument to thermal relic axions. We calculate the axion thermal freeze-out temperature and thus their cosmological abundance on the basis of their interaction with pions. For hadronic axions we find a new mass limit ma<1.05m_a<1.05 eV (95% CL), corresponding to a limit on the axion decay constant of fa>5.7×106f_a>5.7\times 10^6 GeV. For other models this constraint is significantly weakened only if the axion-pion coupling is strongly suppressed. For comparison we note that the same approach leads to mν<0.65\sum m_\nu<0.65 eV (95% CL) for neutrinos.Comment: (17 pages, 12 eps figures

    Searching for Composite Neutrinos in the Cosmic Microwave Background

    Full text link
    We analyze signals in the Cosmic Microwave Background (CMB) in theories where the small Dirac neutrino masses arise as a consequence of the compositeness of right-handed neutrinos. In such theories, the right-handed neutrinos are massless ``baryons'' of a new strong gauge interaction. We find that the results crucially depend on whether or not the new strong sector undergoes chiral symmetry breaking. In the case with chiral symmetry breaking, we find that there are indeed signals in the CMB, but none of them is a direct consequence of neutrino compositeness. In contrast, if the underlying theory does not undergo chiral symmetry breaking, the large scattering cross-section among the composites gives rise to a sizable CMB signal over a wide region of the parameter space, and it can potentially probe whether the neutrino mass spectrum is hierarchical, inverse hierarchical, or degenerate. We also discuss collider constraints on the compositeness in the context of the CMB signals.Comment: 26 pages. References and clarifying comments added. Version appearing to JHE

    Cosmological bounds on sub-MeV mass axions

    Full text link
    Axions with mass greater than 0.7 eV are excluded by cosmological precision data because they provide too much hot dark matter. While for masses above 20 eV the axion lifetime drops below the age of the universe, we show that the cosmological exclusion range can be extended from 0.7 eV till 300 keV, primarily by the cosmic deuterium abundance: axion decays would strongly modify the baryon-to-photon ratio at BBN relative to the one at CMB decoupling. Additional arguments include neutrino dilution relative to photons by axion decays and spectral CMB distortions. Our new cosmological constraints complement stellar-evolution limits and laboratory bounds.Comment: 19 pages, 10 figure

    Cosmological neutrino bounds for non-cosmologists

    Full text link
    I briefly review cosmological bounds on neutrino masses and the underlying gravitational physics at a level appropriate for readers outside the field of cosmology. For the case of three massive neutrinos with standard model freezeout, the current 95% upper limit on the sum of their masses is 0.42 eV. I summarize the basic physical mechanism making matter clustering such a sensitive probe of massive neutrinos. I discuss the prospects of doing still better in coming years using tools such as lensing tomography, approaching a sensitivity around 0.03 eV. Since the lower bound from atmospheric neutrino oscillations is around 0.05 eV, upcoming cosmological measurements should detect neutrino mass if the technical and fiscal challenges can be met.Comment: 4 pages, 2 figs, in "Neutrino Physics", Proceedings of Nobel Symposium 129, eds., L Bergstrom, O. Botner, P. Carlson, P. O. Hulth, and T. Ohlsso

    Neutrino and axion hot dark matter bounds after WMAP-7

    Full text link
    We update cosmological hot dark matter constraints on neutrinos and hadronic axions. Our most restrictive limits use 7-year data from the Wilkinson Microwave Anisotropy Probe for the cosmic microwave background anisotropies, the halo power spectrum (HPS) from the 7th data release of the Sloan Digital Sky Survey, and the Hubble constant from Hubble Space Telescope observations. We find 95% C.L. upper limits of \sum m_\nu<0.44 eV (no axions), m_a<0.91 eV (assuming \sum m_\nu=0), and \sum m_\nu<0.41 eV and m_a<0.72 eV for two hot dark matter components after marginalising over the respective other mass. CMB data alone yield \sum m_\nu<1.19 eV (no axions), while for axions the HPS is crucial for deriving m_a constraints. This difference can be traced to the fact that for a given hot dark matter fraction axions are much more massive than neutrinos.Comment: 9 pages, 3 figures, uses iopart.cls; v2: one additional figure, references added, version accepted by JCA

    Supernova and neutron-star limits on large extra dimensions reexamined

    Full text link
    In theories with large extra dimensions, supernova (SN) cores are powerful sources of Kaluza-Klein (KK) gravitons. A large fraction of these massive particles are gravitationally retained by the newly born neutron star (NS). The subsequent slow KK decays produce potentially observable gamma rays and heat the NS. We here show that the back-absorption of the gravitationally trapped KK gravitons does not significantly change our previous limits. We calculate the graviton emission rate in a nuclear medium by combining the low-energy classical bremsstrahlung rate with detailed-balancing arguments. This approach reproduces the previous thermal emission rate, but it is much simpler and allows for a calculation of the absorption rate by a trivial phase-space transformation. We derive systematically the dependence of the SN and NS limits on the number of extra dimensions.Comment: Erratum included (small numerical correction of neutron-star limits

    Probing neutrino decays with the cosmic microwave background

    Get PDF
    We investigate in detail the possibility of constraining neutrino decays with data from the cosmic microwave background radiation (CMBR). Two generic decays are considered \nu_H -> \nu_L \phi and \nu_H -> \nu_L \nu_L_bar \nu_L. We have solved the momentum dependent Boltzmann equation in order to account for possible relativistic decays. Doing this we estimate that any neutrino with mass m > 1 eV decaying before the present should be detectable with future CMBR data. Combining this result with other results on stable neutrinos, any neutrino mass of the order 1 eV should be detectable.Comment: 8 pages, 4 figures, to appear in Phys. Rev.
    corecore