We update cosmological hot dark matter constraints on neutrinos and hadronic
axions. Our most restrictive limits use 7-year data from the Wilkinson
Microwave Anisotropy Probe for the cosmic microwave background anisotropies,
the halo power spectrum (HPS) from the 7th data release of the Sloan Digital
Sky Survey, and the Hubble constant from Hubble Space Telescope observations.
We find 95% C.L. upper limits of \sum m_\nu<0.44 eV (no axions), m_a<0.91 eV
(assuming \sum m_\nu=0), and \sum m_\nu<0.41 eV and m_a<0.72 eV for two hot
dark matter components after marginalising over the respective other mass. CMB
data alone yield \sum m_\nu<1.19 eV (no axions), while for axions the HPS is
crucial for deriving m_a constraints. This difference can be traced to the fact
that for a given hot dark matter fraction axions are much more massive than
neutrinos.Comment: 9 pages, 3 figures, uses iopart.cls; v2: one additional figure,
references added, version accepted by JCA