5 research outputs found

    Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures

    No full text
    Harvesting human-motion energy for power-integrated wearable electronics could be a promising way to extend the battery-operation time of small low-power-consumption electronics such as various sensors. For this purpose, a fully stretchable triboelectric nanogenerator (S-TENG) that has been fabricated with knitted fabrics and has been integrated with the directly available materials and techniques of the textile industry is introduced. This device has been adapted to cloth movement and can generate electricity under compression and stretching. We investigated plain-, double-, and rib-fabric structures and analyzed their potentials for textile-based energy harvesting. The superior stretchable property of the rib-knitted fabric contributed to a dramatic enhancement of the triboelectric power-generation performance owing to the increased contact surface. The present study shows that, under stretching motions of up to 30%, the S-TENG generates a maximum voltage and a current of 23.50 V and 1.05 μA, respectively, depending on the fabric structures. Under compressions at 3.3 Hz, the S-TENG generated a constant average root-mean square power of up to 60 μW. The results of this work show the feasibility of a cloth-integrated and industrial-ready TENG for the harvesting of energy from human biomechanical movements in cloth and garments

    Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures

    No full text
    Harvesting human-motion energy for power-integrated wearable electronics could be a promising way to extend the battery-operation time of small low-power-consumption electronics such as various sensors. For this purpose, a fully stretchable triboelectric nanogenerator (S-TENG) that has been fabricated with knitted fabrics and has been integrated with the directly available materials and techniques of the textile industry is introduced. This device has been adapted to cloth movement and can generate electricity under compression and stretching. We investigated plain-, double-, and rib-fabric structures and analyzed their potentials for textile-based energy harvesting. The superior stretchable property of the rib-knitted fabric contributed to a dramatic enhancement of the triboelectric power-generation performance owing to the increased contact surface. The present study shows that, under stretching motions of up to 30%, the S-TENG generates a maximum voltage and a current of 23.50 V and 1.05 μA, respectively, depending on the fabric structures. Under compressions at 3.3 Hz, the S-TENG generated a constant average root-mean square power of up to 60 μW. The results of this work show the feasibility of a cloth-integrated and industrial-ready TENG for the harvesting of energy from human biomechanical movements in cloth and garments

    Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures

    No full text
    Harvesting human-motion energy for power-integrated wearable electronics could be a promising way to extend the battery-operation time of small low-power-consumption electronics such as various sensors. For this purpose, a fully stretchable triboelectric nanogenerator (S-TENG) that has been fabricated with knitted fabrics and has been integrated with the directly available materials and techniques of the textile industry is introduced. This device has been adapted to cloth movement and can generate electricity under compression and stretching. We investigated plain-, double-, and rib-fabric structures and analyzed their potentials for textile-based energy harvesting. The superior stretchable property of the rib-knitted fabric contributed to a dramatic enhancement of the triboelectric power-generation performance owing to the increased contact surface. The present study shows that, under stretching motions of up to 30%, the S-TENG generates a maximum voltage and a current of 23.50 V and 1.05 μA, respectively, depending on the fabric structures. Under compressions at 3.3 Hz, the S-TENG generated a constant average root-mean square power of up to 60 μW. The results of this work show the feasibility of a cloth-integrated and industrial-ready TENG for the harvesting of energy from human biomechanical movements in cloth and garments

    Enhanced capacitive pressure sensing performance by charge generation from filler movement in thin and flexible PVDF-GNP composite films

    No full text
    This study introduces an approach to overcome the limitations of conventional pressure sensors by developing a thin and lightweight composite film specifically tailored for flexible capacitive pressure sensors, with a particular emphasis on the medium and high-pressure range. To accomplish this, we have engineered a composite film by combining polyvinylidene fluoride (PVDF) and graphite nanoplatelets (GNP) derived from expanded graphite (Ex-G). The uniform sized GNP with average lateral size of 2.55av and the average thickness of 33.74 av with narrow size distribution was obtained a gas induced expansion of expandable graphite (EXP-G) combined with tip sonication in solvent. By this precisely controlled GNP within the composite film, a remarkable improvement in sensor sensitivity has been achieved, surpassing 4.18 MPa−1 within the pressure range of 0.1 to 1.6 MPa. This enhancement can be attributed to the generation of electric charge from the movement of GNP in polymer matrix. Additionally, stability testing has demonstrated the reliable operation of the composite film over 1000 cycles. Notably, the composite film exhibits exceptional continuous pressure sensing capabilities with a rapid response time of approximately 100 milliseconds. Experimental validation using a 3 × 3sensor array has confirmed the accurate detection of specific contact points, thus highlighting the potential of the composite film for selective pressure sensing. These findings signify an advancement in the field of flexible capacitive pressure sensors that offer enhanced sensitivity, consistent operation, rapid response time, and the unique ability to selectively sense pressure. Our study provide the effect of GNP in polymer composite system with a facile and easy process, to enhance the capacitive pressure sensing properties, particularly at high pressure range applications.</p

    Additional file 2: of O-linked N-acetylglucosamine glycosylation of p65 aggravated the inflammation in both fibroblast-like synoviocytes stimulated by tumor necrosis factor-α and mice with collagen induced arthritis

    No full text
    MTT assay. TNF-α (10 μg/mL) significantly increased proliferation of fibroblast-like synoviocytes (FLS), compared to controls and proliferation was further enhanced following treatment with by NButGT (50 μM, for 24 h). (JPEG 79 kb
    corecore