2,085 research outputs found
The Influence of Quantum Critical Fluctuations of Circulating Current Order Parameters on the Normal State Properties of Cuprates
We study a model of the quantum critical point of cuprates associated with
the "circulating current" order parameter proposed by Varma. An effective
action of the order parameter in the quantum disordered phase is derived using
functional integral method, and the physical properties of the normal state are
studied based on the action. The results derived within the ladder
approximation indicate that the system is like Fermi liquid near the quantum
critical point and in disordered regime up to minor corrections. This implies
that the suggested marginal Fermi liquid behavior induced by the circulating
current fluctuations will come in from beyond the ladder diagrams.Comment: 7pages, 1 figure included in RevTex file. To appear in Phys. Rev.
Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles
In this work, we study the `scalar channel' of the emission of Hawking
radiation from a (4+n)-dimensional, rotating black hole on the brane. We
numerically solve both the radial and angular part of the equation of motion
for the scalar field, and determine the exact values of the absorption
probability and of the spheroidal harmonics, respectively. With these, we
calculate the particle, energy and angular momentum emission rates, as well as
the angular variation in the flux and power spectra -- a distinctive feature of
emission during the spin-down phase of the life of the produced black hole. Our
analysis is free from any approximations, with our results being valid for
arbitrarily large values of the energy of the emitted particle, angular
momentum of the black hole and dimensionality of spacetime. We finally compute
the total emissivities for the number of particles, energy and angular momentum
and compare their relative behaviour for different values of the parameters of
the theory.Comment: 24 pages, 13 figure
Brane Decay of a (4+n)-Dimensional Rotating Black Hole. II: spin-1 particles
The present works complements and expands a previous one, focused on the
emission of scalar fields by a (4+n)-dimensional rotating black hole on the
brane, by studying the emission of gauge fields on the brane from a similar
black hole. A comprehensive analysis of the particle, energy and angular
momentum emission rates is undertaken, for arbitrary angular momentum of the
black hole and dimensionality of spacetime. Our analysis reveals the existence
of a number of distinct features associated with the emission of spin-1 fields
from a rotating black hole on the brane, such as the behaviour and magnitude of
the different emission rates, the angular distribution of particles and energy,
the relative enhancement compared to the scalar fields, and the magnitude of
the superradiance effect. Apart from their theoretical interest, these features
can comprise clear signatures of the emission of Hawking radiation from a
brane-world black hole during its spin-down phase upon successful detection of
this effect during an experiment.Comment: 35 pages, 19 figures, Latex fil
Brane Decay of a (4+n)-Dimensional Rotating Black Hole. III: spin-1/2 particles
In this work, we have continued the study of the Hawking radiation on the
brane from a higher-dimensional rotating black hole by investigating the
emission of fermionic modes. A comprehensive analysis is performed that leads
to the particle, power and angular momentum emission rates, and sheds light on
their dependence on fundamental parameters of the theory, such as the spacetime
dimension and angular momentum of the black hole. In addition, the angular
distribution of the emitted modes, in terms of the number of particles and
energy, is thoroughly studied. Our results are valid for arbitrary values of
the energy of the emitted particles, dimension of spacetime and angular
momentum of the black hole, and complement previous results on the emission of
brane-localised scalars and gauge bosons.Comment: Latex file, JHEP style, 34 pages, 16 figures Energy range in plots
increased, minor changes, version published in JHE
Loop-Generated Bounds on Changes to the Graviton Dispersion Relation
We identify the effective theory appropriate to the propagation of massless
bulk fields in brane-world scenarios, to show that the dominant low-energy
effect of asymmetric warping in the bulk is to modify the dispersion relation
of the effective 4-dimensional modes. We show how such changes to the graviton
dispersion relation may be bounded through the effects they imply, through
loops, for the propagation of standard model particles. We compute these bounds
and show that they provide, in some cases, the strongest constraints on
nonstandard gravitational dispersions. The bounds obtained in this way are the
strongest for the fewest extra dimensions and when the extra-dimensional Planck
mass is the smallest. Although the best bounds come for warped 5-D scenarios,
for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop
can lead to a bound on the graviton speed which is comparable with other
constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte
Information-sharing outage-probability analysis of vehicular networks
In vehicular networks, information dissemination/sharing among vehicles is of salient importance. Although diverse mechanisms have been proposed in the existing literature, the related information credibility issues have not been investigated. Against this background, in this paper, we propose a credible information-sharing mechanism capable of ensuring that the vehicles do share genuine road traffic information (RTI). We commence with the outage-probability analysis of information sharing in vehicular networks under both a general scenario and a specific highway scenario. Closed-form expressions are derived for both scenarios, given the specific channel settings. Based on the outage-probability expressions, we formulate the utility of RTI sharing and design an algorithm for promoting the sharing of genuine RTI. To verify our theoretical analysis and the proposed mechanism, we invoke a real-world dataset containing the locations of Beijing taxis to conduct our simulations. Explicitly, our simulation results show that the spatial distribution of the vehicles obeys a Poisson point process (PPP), and our proposed credible RTI sharing mechanism is capable of ensuring that all vehicles indeed do share genuine RTI with each other
Gravitational dipole radiations from binary systems
We investigate the possibility of generating sizeable dipole radiations in
relativistic theories of gravity. Optimal parameters to observe their effects
through the orbital period decay of binary star systems are discussed.
Constraints on gravitational couplings beyond general relativity are derived.Comment: One comment added, accepted for publication in Phys. Rev.
Response of an Excitatory-Inhibitory Neural Network to External Stimulation: An Application to Image Segmentation
Neural network models comprising elements which have exclusively excitatory
or inhibitory synapses are capable of a wide range of dynamic behavior,
including chaos. In this paper, a simple excitatory-inhibitory neural pair,
which forms the building block of larger networks, is subjected to external
stimulation. The response shows transition between various types of dynamics,
depending upon the magnitude of the stimulus. Coupling such pairs over a local
neighborhood in a two-dimensional plane, the resultant network can achieve a
satisfactory segmentation of an image into ``object'' and ``background''.
Results for synthetic and and ``real-life'' images are given.Comment: 8 pages, latex, 5 figure
Weblog patterns and human dynamics with decreasing interest
Weblog is the fourth way of network exchange after Email, BBS and MSN. Most
bloggers begin to write blogs with great interest, and then their interests
gradually achieve a balance with the passage of time. In order to describe the
phenomenon that people's interest in something gradually decreases until it
reaches a balance, we first propose the model that describes the attenuation of
interest and reflects the fact that people's interest becomes more stable after
a long time. We give a rigorous analysis on this model by non-homogeneous
Poisson processes. Our analysis indicates that the interval distribution of
arrival-time is a mixed distribution with exponential and power-law feature,
that is, it is a power law with an exponential cutoff. Second, we collect blogs
in ScienceNet.cn and carry on empirical studies on the interarrival time
distribution. The empirical results agree well with the analytical result,
obeying a special power law with the exponential cutoff, that is, a special
kind of Gamma distribution. These empirical results verify the model, providing
an evidence for a new class of phenomena in human dynamics. In human dynamics
there are other distributions, besides power-law distributions. These findings
demonstrate the variety of human behavior dynamics.Comment: 8 pages, 1 figure
Technical Note: Error metrics for estimating the accuracy of needle/instrument placement during transperineal MR/US-guided prostate interventions
Purpose: Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally-invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult.
Methods: A set of 9 measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach.
Results: Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0±1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0±1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm.
Conclusions: The application of a comprehensive, unbiased validation assessment for MR/TRUS guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behaviour of these systems
- …