5,851 research outputs found

    A Description Logic of Typicality for Conceptual Combination

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of combining prototypical concepts, an open problem in the fields of AI and cognitive modelling. Our logic extends the logic of typicality ALC + TR, based on the notion of rational closure, by inclusions p :: T(C) v D (“we have probability p that typical Cs are Ds”), coming from the distributed semantics of probabilistic Description Logics. Additionally, it embeds a set of cognitive heuristics for concept combination. We show that the complexity of reasoning in our logic is EXPTIME-complete as in ALC

    Interaction of point sources and vortices for incompressible planar fluids

    Full text link
    We consider a new system of differential equations which is at the same time gradient and locally Hamiltonian. It is obtained by just replacing a factor in the equations of interaction for N point vortices, and it is interpreted as an interaction of N point sources. Because of the local Hamiltonian structure and the symmetries it obeys, it does possess some of the first integrals that appear in the N vortex problem. We will show that binary collisions are easily blown up in this case since the equations of motion are of first order. This method may be easily generalized to the blow up of higher order collisions. We then generalize the model further to interactions of sources and vortices.Comment: 9 page

    Coatings for directional eutectics

    Get PDF
    Coating compositions were evaluated for oxidation protection of directionally solidified composite alloy NiTaC-13. These coatings included three NiCrAlY compositions (30-5-1, 25-10-1 and 20-15-1), two FeCrAlY compositions (30-5-1 and 25-10-1), a CoCrAlY composition (25-10-1), and one duplex coating, Ni-35Cr + Al. Duplicate pin samples of each composition were evaluated using two cyclic furnace oxidation tests of 100 hours at 871 C and 500 hours at 1093 C. The two best coatings were Ni-20Cr-15Al-lY and Ni-35Cr + Al. The two preferred coatings were deposited on pins and were evaluated in detail in .05 Mach cyclic burner rig oxidation to 1093 C. The NiCrAlY coating was protective after 830 hours of cycling, while the duplex coating withstood 630 hours. Test bars were coated and cycled for up to 500 hours. Tensile tests indicated no effect of coatings on strength. In 871 C air stress rupture, a degradation was observed for coated relative to bare material. The cycled NiCrAlY coating offered excellent protection with properties superior to the bare cycled NiTaC-13 in 1093 C air stress rupture

    Acer rubrum Wats.

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/4668/thumbnail.jp

    Samolus valerandi L.

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/20918/thumbnail.jp

    Fraxinus americana L.

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/21184/thumbnail.jp

    Acer saccharum Marshall

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/21778/thumbnail.jp

    Experimental Evidence for Quantum Structure in Cognition

    Full text link
    We proof a theorem that shows that a collection of experimental data of membership weights of items with respect to a pair of concepts and its conjunction cannot be modeled within a classical measure theoretic weight structure in case the experimental data contain the effect called overextension. Since the effect of overextension, analogue to the well-known guppy effect for concept combinations, is abundant in all experiments testing weights of items with respect to pairs of concepts and their conjunctions, our theorem constitutes a no-go theorem for classical measure structure for common data of membership weights of items with respect to concepts and their combinations. We put forward a simple geometric criterion that reveals the non classicality of the membership weight structure and use experimentally measured membership weights estimated by subjects in experiments to illustrate our geometrical criterion. The violation of the classical weight structure is similar to the violation of the well-known Bell inequalities studied in quantum mechanics, and hence suggests that the quantum formalism and hence the modeling by quantum membership weights can accomplish what classical membership weights cannot do.Comment: 12 pages, 3 figure
    • …
    corecore