11,823 research outputs found

    Universality Principle for Orbital Angular Momentum and Spin in Gravity with Torsion

    Get PDF
    We argue that compatibility with elementary particle physics requires gravitational theories with torsion to be unable to distinguish between orbital angular momentum and spin. An important consequence of this principle is that spinless particles must move along autoparallel trajectories, not along geodesics.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re27

    Superconducting niobium thin film slow-wave structures

    Get PDF
    A superconducting comb structure as a slow-wave element in a traveling-wave maser will significantly improve maser noise temperature and gain by reducing the insertion loss. The results of the insertion loss measurements of superconducting niobium slow-wave structures subjected to maser operating conditions at X-Band frequencies are presented

    Tetragonal CuO: A new end member of the 3d transition metal monoxides

    Get PDF
    Monoclinic CuO is anomalous both structurally as well as electronically in the 3dd transition metal oxide series. All the others have the cubic rock salt structure. Here we report the synthesis and electronic property determination of a tetragonal (elongated rock salt) form of CuO created using an epitaxial thin film deposition approach. In situ photoelectron spectroscopy suggests an enhanced charge transfer gap Δ\Delta with the overall bonding more ionic. As an end member of the 3d transition monoxides, its magnetic properties should be that of a high TNT_N antiferromagnet

    Fermion Helicity Flip Induced by Torsion Field

    Get PDF
    We show that in theories of gravitation with torsion the helicity of fermion particles is not conserved and we calculate the probability of spin flip, which is related to the anti-symmetric part of affine connection. Some cosmological consequences are discussed.Comment: 6 pages, to appear in Europhysics Letter

    Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature

    Full text link
    We study molecular para-hydrogen (p-H2{\rm H_{2}}) and ortho-deuterium (o-D2{\rm D_{2}}) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems like the total and kinetic energy per particle, radial pair distribution function, and Lindemann's ratio in the low pressure regime. By comparing the total energy per particle as a function of the density in liquid and solid p-H2{\rm H_{2}}, we show that molecular para-hydrogen, and also ortho-deuterium, remain solid at zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based on the Nosanow-Jastrow model, in the p-H2{\rm H_{2}} solid film at the variational level. In particular, we analyze a new type of symmetrized trial wave function which has been used very recently to describe solid 4^{4}He and found that also characterizes hydrogen satisfactorily. With this wave function, we show that the one-body density matrix ϱ1(r)\varrho_{1} (r) of solid p-H2{\rm H_{2}} possesses off-diagonal long range order, with a condensate fraction that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure

    Dilute Bose gases interacting via power-law potentials

    Full text link
    Neutral atoms interact through a van der Waals potential which asymptotically falls off as r^{-6}. In ultracold gases, this interaction can be described to a good approximation by the atom-atom scattering length. However, corrections arise that depend on the characteristic length of the van der Waals potential. We parameterize these corrections by analyzing the energies of two- and few-atom systems under external harmonic confinement, obtained by numerically and analytically solving the Schrodinger equation. We generalize our results to particles interacting through a longer-ranged potential which asymptotically falls off as r^{-4}.Comment: 7 pages, 4 figure

    XUV Frequency Combs via Femtosecond Enhancement Cavities

    Full text link
    We review the current state of tabletop extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC). Recent developments have enabled generation of high photon flux (1014 photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the spectral region from 40 nm - 120 nm. This level of performance has enabled precision spectroscopy with XUV frequency combs and promises further applications in XUV spectroscopic and photoemission studies. We discuss the theory of operation and experimental details of the fsEC and XUV generation based on HHG, including current technical challenges to increasing the photon flux and maximum photon energy produced by this type of system. Current and future applications for these sources are also discussed.Comment: invited review article, 38 page

    Spinless Matter in Transposed-Equi-Affine Theory of Gravity

    Full text link
    We derive and discus the equations of motion for spinless matter: relativistic spinless scalar fields, particles and fluids in the recently proposed by A. Saa model of gravity with covariantly constant volume with respect to the transposed connection in Einstein-Cartan spaces. A new interpretation of this theory as a theory with variable Plank "constant" is suggested. We show that the consistency of the semiclassical limit of the wave equation and classical motion dictates a new definite universal interaction of torsion with massive fields.Comment: 29 pages, latex, no figures. New Section on semiclassical limit of wave equation added; old references rearranged; new references, remarks, comments, and acknowledgments added; typos correcte
    • …
    corecore