9,915 research outputs found
On the dynamics of vortex modes within magnetic islands
Recent work investigating the interaction of magnetic islands with
micro-turbulence has uncovered the striking observation of large scale vortex
modes forming within the island structure [W.A. Hornsby {\it et al.}, Phys.
Plasmas {\bf 17} 092301 (2010)]. These electrostatic vortices are found to be
the size of the island and are oscillatory. It is this oscillatory behaviour
and the presence of turbulence that leads us to believe that the dynamics are
related to the Geodesic Acoustic Mode (GAM), and it is this link that is
investigated in this paper.
Here we derive an equation for the GAM in the MHD limit, in the presence of a
magnetic island modified three-dimensional axisymmetric geometry. The
eigenvalues and eigenfunctions are calculated numerically and then utilised to
analyse the dynamics of oscillatory large-scale electrostatic potential
structures seen in both linear and non-linear gyro-kinetic simulations
Vertex Operators in 4D Quantum Gravity Formulated as CFT
We study vertex operators in 4D conformal field theory derived from quantized
gravity, whose dynamics is governed by the Wess-Zumino action by Riegert and
the Weyl action. Conformal symmetry is equal to diffeomorphism symmetry in the
ultraviolet limit, which mixes positive-metric and negative-metric modes of the
gravitational field and thus these modes cannot be treated separately in
physical operators. In this paper, we construct gravitational vertex operators
such as the Ricci scalar, defined as space-time volume integrals of them are
invariant under conformal transformations. Short distance singularities of
these operator products are computed and it is shown that their coefficients
have physically correct sign. Furthermore, we show that conformal algebra holds
even in the system perturbed by the cosmological constant vertex operator as in
the case of the Liouville theory shown by Curtright and Thorn.Comment: 26 pages, rewrote review part concisely, added explanation
Teleportation and entanglement distillation in the presence of correlation among bipartite mixed states
The teleportation channel associated with an arbitrary bipartite state
denotes the map that represents the change suffered by a teleported state when
the bipartite state is used instead of the ideal maximally entangled state for
teleportation. This work presents and proves an explicit expression of the
teleportation channel for the teleportation using Weyl's projective unitary
representation of the space of 2n-tuples of numbers from Z/dZ for integers d>1,
n>0, which has been known for n=1. This formula allows any correlation among
the n bipartite mixed states, and an application shows the existence of
reliable schemes for distillation of entanglement from a sequence of mixed
states with correlation.Comment: 12 pages, 1 figur
Recursion Relations in Liouville Gravity coupled to Ising Model satisfying Fusion Rules
The recursion relations of 2D quantum gravity coupled to the Ising model
discussed by the author previously are reexamined. We study the case in which
the matter sector satisfies the fusion rules and only the primary operators
inside the Kac table contribute. The theory involves unregularized divergences
in some of correlators. We obtain the recursion relations which form a closed
set among well-defined correlators on sphere, but they do not have a beautiful
structure that the bosonized theory has and also give an inconsistent result
when they include an ill-defined correlator with the divergence. We solve them
and compute the several normalization independent ratios of the well-defined
correlators, which agree with the matrix model results.Comment: Latex, 22 page
- …