24 research outputs found

    Plasma Biomarkers for Monitoring Brain Pathophysiology in FMR1 Premutation Carriers.

    Get PDF
    Premutation carriers have a 55-200 CGG expansion in the fragile X mental retardation 1 (FMR1) gene. Currently, 1.5 million individuals are affected in the United States, and carriers are at risk of developing the late-onset neurodegenerative disorder Fragile X-associated tremor ataxia syndrome (FXTAS). Limited efforts have been made to develop new methods for improved early patient monitoring, treatment response, and disease progression. To this end, plasma metabolomic phenotyping was obtained for 23 premutation carriers and 16 age- and sex-matched controls. Three biomarkers, phenylethylamine normalized by either aconitate or isocitrate and oleamide normalized by isocitrate, exhibited excellent model performance. The lower phenylethylamine and oleamide plasma levels in carriers may indicate, respectively, incipient nigrostriatal degeneration and higher incidence of substance abuse, anxiety and sleep disturbances. Higher levels of citrate, isocitrate, aconitate, and lactate may reflect deficits in both bioenergetics and neurotransmitter metabolism (Glu, GABA). This study lays important groundwork by defining the potential utility of plasma metabolic profiling to monitor brain pathophysiology in carriers before and during the progression of FXTAS, treatment efficacy and evaluation of side effects

    Artificial escape from XCI by DNA methylation editing of the CDKL5 gene.

    Get PDF
    A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders

    dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression.

    Get PDF
    Distinct epigenomic profiles of histone marks have been associated with gene expression, but questions regarding the causal relationship remain. Here we investigated the activity of a broad collection of genomically targeted epigenetic regulators that could write epigenetic marks associated with a repressed chromatin state (G9A, SUV39H1, Krüppel-associated box (KRAB), DNMT3A as well as the first targetable versions of Ezh2 and Friend of GATA-1 (FOG1)). dCas9 fusions produced target gene repression over a range of 0- to 10-fold that varied by locus and cell type. dCpf1 fusions were unable to repress gene expression. The most persistent gene repression required the action of several effector domains; however, KRAB-dCas9 did not contribute to persistence in contrast to previous reports. A 'direct tethering' strategy attaching the Ezh2 methyltransferase enzyme to dCas9, as well as a 'recruitment' strategy attaching the N-terminal 45 residues of FOG1 to dCas9 to recruit the endogenous nucleosome remodeling and deacetylase complex, were both successful in targeted deposition of H3K27me3. Surprisingly, however, repression was not correlated with deposition of either H3K9me3 or H3K27me3. Our results suggest that so-called repressive histone modifications are not sufficient for gene repression. The easily programmable dCas9 toolkit allowed precise control of epigenetic information and dissection of the relationship between the epigenome and gene regulation

    363 A CRISPR/dCas9 Epigenetic Therapuetic Approach for CASK-Related MICPCH

    No full text
    OBJECTIVES/GOALS: CASK-related microcephaly with pontine and cerebellar hypoplasia (MICPCH) is a rare X-linked neurodevelopmental disorder caused by mutations in calcium/calmodulin-dependent serine protein kinase (CASK). We aim to rescue CASK expression via an CRISPR/dCas9 epigenetic therapeutic and create iPSC-based CASK relevant in vitro model systems. METHODS/STUDY POPULATION: As females have two X-chromosomes, disease causing mutations present with a 50/50 expression of mutant and wildtype, due to the mosaicism caused by random X-chromosome inactivation (XCI). This project will adapt an established CRISPR/dCas9 epigenetic approach to rescue expression from the silenced, wild-type CASK allele. We aim to accomplish this through testing different dCas9 orthologues and a guide RNA screen targeting the CASK promoter. Constructs will be tested for optimal targeting efficacy in vitro and assessed via RT-qPCR. Additionally, epigenetic modifications from our approach will be analyzed through bisulfite sequencing. We also aim to apply this epigenetic rescue technology in disease relevant cell lines and eventually in engineered patient mutation iPSC-derived neurons. RESULTS/ANTICIPATED RESULTS: Our results show the ability to target CASK and assess gene expression changes with CRISPR/dCas9 paired with an epigenetic modifier and transcriptional activator. Additionally, our fibroblast model with nonpathogenic single nucleotide polymorphisms within CASKallow for allele specific analysis of our targeted reactivation. We anticipate that following an increase of CASK expression, there would be a decrease in region specific promoter methylation. Further, with the identification of clinically described disease-causing point mutations that result in a loss of function of CASK protein, induction of the mutant sequence onto a healthy cell background will result in a similar reduction of CASK protein in our cell model. DISCUSSION/SIGNIFICANCE: This project will demonstrate the first therapeutic avenue for CASK-related MICPCH, and the potential to utilize targeted X-reactivation as a platform approach for X-linked disorders. Further, investigation of smaller dCas9 orthologues prepares our approach for future translational applications such as packaging into AAV for delivery

    The iNs and Outs of Direct Reprogramming to Induced Neurons.

    No full text
    Understanding of cell-type specific transcription factors has promoted progress in methods for cellular reprogramming, such as directly reprogramming somatic cells to induced neurons (iN). Methods for direct reprogramming require neuronal-fate determining gene activation via neuron-specific microRNAs, chemical modulation of key neuronal signaling pathways or overexpression via viral vectors, with some reprogramming strategies requiring a combination of these methods to induce the neuronal-cell fate. These methods have been employed in a multitude of cell types, including fibroblasts, hepatocytes, peripheral blood mononuclear, and T cells. The ability to create iN from skin biopsies and blood samples coupled with recent advancements in artificially inducing age- and disease-associated phenotypes are accelerating the development of disease models for late-onset neurodegenerative disorders. Here, we review how activation of the neuronal transcriptome alters the epigenetic landscape of the donor cell to facilitate reprogramming to neurons. We also discuss the advantages of using DNA binding domains such as CRISPR/dCas9 to overcome epigenetic barriers to induce neuronal-cell fate by activating endogenous neuronal cell-fate determining genes
    corecore