214 research outputs found

    Soil health metrics reflect yields in long‑term cropping system experiments

    Get PDF
    Soil health metrics with strong links to ecological function and agricultural productivity are needed to ensure that future management of agricultural systems meets sustainability goals. While ecological metrics and crop yields are often considered separately from one another, our work sought to assess the links between the two in an agricultural context where productivity is a key consideration. Here, we investigated the value of soil health tests in terms of their relevance to agricultural management practices and crop yields at contrasting long term cropping systems experiments. One site was on a sandy loam Leptic Podzol and the other on a sandy clay loam Endostagnic Luvisol. Furthermore, the experiments had different management systems. One contained legume-supported rotations with different grass-clover ley durations and organic amendment usage, while the other compared a range of nutrient input options through fertiliser and organic amendments on the same rotation without ley periods. Metrics included field tests (earthworm counts and visual evaluation of soil structure scores) with laboratory analysis of soil structure, chemistry and biology. This analysis included bulk density, macroporosity, pH, available phosphorus, exchangeable potassium, soil organic matter and potentially mineralizable nitrogen. Using a novel combination of long-term experiments, management systems and distinctive soil types, we demonstrated that as well as providing nutrients, agricultural management which resulted in better soil organic matter, pH, potassium and bulk density was correlated with higher crop yields. The importance of ley duration and potentially mineralizable nitrogen to yield in legume-supported systems showed the impact of agricultural management on soil biology. In systems with applications of synthetic fertiliser, earthworm counts and visual evaluation of soil structure scores were correlated with higher yields. We concluded that agricultural management altered yields not just through direct supply of nutrients to crops, but also through the changes in soil health measured by simple metrics

    A Decline in New HIV Infections in South Africa: Estimating HIV Incidence from Three National HIV Surveys in 2002, 2005 and 2008

    Get PDF
    Three national HIV household surveys were conducted in South Africa, in 2002, 2005 and 2008. A novelty of the 2008 survey was the addition of serological testing to ascertain antiretroviral treatment (ART) use.We used a validated mathematical method to estimate the rate of new HIV infections (HIV incidence) in South Africa using nationally representative HIV prevalence data collected in 2002, 2005 and 2008. The observed HIV prevalence levels in 2008 were adjusted for the effect of antiretroviral treatment on survival. The estimated "excess" HIV prevalence due to ART in 2008 was highest among women 25 years and older and among men 30 years and older. In the period 2002-2005, the HIV incidence rate among men and women aged 15-49 years was estimated to be 2.0 new infections each year per 100 susceptible individuals (/100pyar) (uncertainty range: 1.2-3.0/100pyar). The highest incidence rate was among 15-24 year-old women, at 5.5/100pyar (4.5-6.5). In the period 2005-2008, incidence among men and women aged 15-49 was estimated to be 1.3/100 (0.6-2.5/100pyar), although the change from 2002-2005 was not statistically significant. However, the incidence rate among young women aged 15-24 declined by 60% in the same period, to 2.2/100pyar, and this change was statistically significant. There is evidence from the surveys of significant increases in condom use and awareness of HIV status, especially among youth.Our analysis demonstrates how serial measures of HIV prevalence obtained in population-based surveys can be used to estimate national HIV incidence rates. We also show the need to determine the impact of ART on observed HIV prevalence levels. The estimation of HIV incidence and ART exposure is crucial to disentangle the concurrent impact of prevention and treatment programs on HIV prevalence

    Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials

    Get PDF
    BACKGROUND: Artemisinin combination therapies (ACT), which are increasingly being introduced for treatment of Plasmodium falciparum malaria, are more effective against sexual stage parasites (gametocytes) than previous first-line antimalarials and therefore have the potential to reduce parasite transmission. The size of this effect is estimated in symptomatic P. falciparum infections. METHODS: Data on 3,174 patients were pooled from six antimalarial trials conducted in The Gambia and Kenya. Multivariable regression was used to investigate the role of ACT versus non-artemisinin antimalarial treatment, treatment failure, presence of pre-treatment gametocytes and submicroscopic gametocytaemia on transmission to mosquitoes and the area under the curve (AUC) of gametocyte density during the 28 days of follow up. RESULTS: ACT treatment was associated with a significant reduction in the probability of being gametocytaemic on the day of transmission experiments (OR 0.20 95% CI 0.16-0.26), transmission to mosquitoes by slide-positive gametocyte carriers (OR mosquito infection 0.49 95% CI 0.33-0.73) and AUC of gametocyte density (ratio of means 0.35 95% CI 0.31-0.41). Parasitological treatment failure did not account for the difference between ACT and non-artemisinin impact. The presence of slide-positive gametocytaemia prior to treatment significantly reduced ACT impact on gametocytaemia (p < 0.001). Taking account of submicroscopic gametocytaemia reduced estimates of ACT impact in a high transmission setting in Kenya, but not in a lower transmission setting in the Gambia. CONCLUSION: Treatment with ACT significantly reduces infectiousness of individual patients with uncomplicated falciparum malaria compared to previous first line treatments. Rapid treatment of cases before gametocytaemia is well developed may enhance the impact of ACT on transmission

    Understanding the Impact of Male Circumcision Interventions on the Spread of HIV in Southern Africa

    Get PDF
    BACKGROUND: Three randomised controlled trials have clearly shown that circumcision of adult men reduces the chance that they acquire HIV infection. However, the potential impact of circumcision programmes--either alone or in combination with other established approaches--is not known and no further field trials are planned. We have used a mathematical model, parameterised using existing trial findings, to understand and predict the impact of circumcision programmes at the population level. FINDINGS: Our results indicate that circumcision will lead to reductions in incidence for women and uncircumcised men, as well as those circumcised, but that even the most effective intervention is unlikely to completely stem the spread of the virus. Without additional interventions, HIV incidence could eventually be reduced by 25-35%, depending on the level of coverage achieved and whether onward transmission from circumcised men is also reduced. However, circumcision interventions can act synergistically with other types of prevention programmes, and if efforts to change behaviour are increased in parallel with the scale-up of circumcision services, then dramatic reductions in HIV incidence could be achieved. In the long-term, this could lead to reduced AIDS deaths and less need for anti-retroviral therapy. Any increases in risk behaviours following circumcision, i.e. 'risk compensation', could offset some of the potential benefit of the intervention, especially for women, but only very large increases would lead to more infections overall. CONCLUSIONS: Circumcision will not be the silver bullet to prevent HIV transmission, but interventions could help to substantially protect men and women from infection, especially in combination with other approaches

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Plasmodium falciparum gametocyte dynamics in areas of different malaria endemicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to identify and compare factors associated with <it>Plasmodium falciparum </it>gametocyte carriage in three regions of differing malaria endemicity.</p> <p>Methods</p> <p>Retrospective data from Thailand, The Gambia and Tanzania were used. The data came from large prospective field-based clinical trials, which investigated gametocyte carriage after different anti-malarial drug treatments.</p> <p>Results</p> <p>Gametocytaemia was detected during the observation period in 12% of patients (931 out of 7548) in Thailand, 34% (683 out of 2020) in The Gambia, and 31% (430 out of 1400) in Tanzania (p < 0.001). Approximately one third (33%, 680/2044) of the patients with gametocytaemia during the observation period, already had patent gametocytaemia at enrolment (day 0 or day 1): 35% (318/931) in Thailand, 37% (250/683) in The Gambia, 26% (112/430) in Tanzania. Maximum gametocytaemia was usually observed on or before the seventh day after starting treatment (93% in Thailand, 70% in Tanzania and 78% in The Gambia). Lowest gametocyte carriage rates were observed following treatment with artemisinin derivatives, while sulphadoxine-pyrimethamine (SP) was associated with significantly greater development of gametocytaemia than other drug treatments (p < 0.001). The duration of gametocyte carriage was shorter in Thailand by 86% and Tanzania by 65% than in The Gambia. Gametocyte carriage was 27% longer among people presenting with anaemia, and was shorter in duration among patients who received artemisinin derivatives, by 27% in Thailand and by 71% in Tanzania and The Gambia.</p> <p>Conclusion</p> <p>This study confirms the independent association of gametocytaemia with anaemia, and the significantly lower prevalence and duration of gametocyte carriage following treatment with an artemisinin derivative. The large differences in gametocyte carriage rates between regions with different levels of malaria transmission suggest that drug interventions to prevent transmission will have different effects in different places.</p

    The role of anti-malarial drugs in eliminating malaria

    Get PDF
    Effective anti-malarial drug treatment reduces malaria transmission. This alone can reduce the incidence and prevalence of malaria, although the effects are greater in areas of low transmission where a greater proportion of the infectious reservoir is symptomatic and receives anti-malarial treatment. Effective treatment has greater effects on the transmission of falciparum malaria, where gametocytogenesis is delayed, compared with the other human malarias in which peak gametocytaemia and transmissibility coincides with peak asexual parasite densities. Mature Plasmodium falciparum gametocytes are more drug resistant and affected only by artemisinins and 8-aminoquinolines. The key operational question now is whether primaquine should be added to artemisinin combination treatments for the treatment of falciparum malaria to reduce further the transmissibility of the treated infection. Radical treatment with primaquine plays a key role in the eradication of vivax and ovale malaria. More evidence is needed on the safety of primaquine when administered without screening for G6PD deficiency to inform individual and mass treatment approaches in the context of malaria elimination programmes

    Submicroscopic Gametocytes and the Transmission of Antifolate-Resistant Plasmodium falciparum in Western Kenya

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up. CONCLUSIONS/SIGNIFICANCE: In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites
    corecore