207 research outputs found

    Fungi in the healthy human gastrointestinal tract

    Get PDF
    Many species of fungi have been detected in the healthy human gut; however, nearly half of all taxa reported have only been found in one sample or one study. Fungi capable of growing in and colonizing the gut are limited to a small number of species, mostly Candida yeasts and yeasts in the family Dipodascaceae (Galactomyces, Geotrichum, Saprochaete). Malassezia and the filamentous fungus Cladosporium are potential colonizers; more work is needed to clarify their role. Other commonly-detected fungi come from the diet or environment but either cannot or do not colonize (Penicillium and Debaryomyces species, which are common on fermented foods but cannot grow at human body temperature), while still others have dietary or environmental sources (Saccharomyces cerevisiae, a fermentation agent and sometime probiotic; Aspergillus species, ubiquitous molds) yet are likely to impact gut ecology. The gut mycobiome appears less stable than the bacterial microbiome, and is likely subject to environmental factors

    The human gut mycobiome: pitfalls and potentials — a mycologist\u27s perspective

    Get PDF
    We have entered the Age of the Microbiome, with new studies appearing constantly and whole journals devoted to the human microbiome. While bacteria outnumber other gut microbes by orders of magnitude, eukaryotes are consistently found in the human gut, and are represented primarily by the fungi. Compiling 36 studies spanning from 1917 to 2015, we found at least 267 distinct fungal taxa have been reported from the human gut, and seemingly every new study includes one or more fungi not previously described from this niche. This diversity, while impressive, is illusory. If we examine gut fungi, we will quickly observe a division between a small number of commonly detected species (Candida yeasts, Saccharomyces and yeasts in the Dipodascaceae, and Malassezia species), and a long tail of taxa which have only been reported once. Furthermore, an investigation into the ecology of these rare species reveals that many of them are incapable of colonization or long-term persistence in the gut. This paper examines what we know and have yet to learn about the fungal component of the gut microbiome, or “mycobiome”, and an overview of methods. We address the potential of the field while introducing some caveats, and argue for the necessity of including mycologists in mycobiome studies

    Fungi in the healthy human gastrointestinal tract

    Get PDF
    Many species of fungi have been detected in the healthy human gut; however, nearly half of all taxa reported have only been found in one sample or one study. Fungi capable of growing in and colonizing the gut are limited to a small number of species, mostly Candida yeasts and yeasts in the family Dipodascaceae (Galactomyces, Geotrichum, Saprochaete). Malassezia and the filamentous fungus Cladosporium are potential colonizers; more work is needed to clarify their role. Other commonly-detected fungi come from the diet or environment but either cannot or do not colonize (Penicillium and Debaryomyces species, which are common on fermented foods but cannot grow at human body temperature), while still others have dietary or environmental sources (Saccharomyces cerevisiae, a fermentation agent and sometime probiotic; Aspergillus species, ubiquitous molds) yet are likely to impact gut ecology. The gut mycobiome appears less stable than the bacterial microbiome, and is likely subject to environmental factors

    Sequence-based Methods for Detecting and Evaluating the Human Gut Mycobiome

    Get PDF
    We surveyed the fungal microbiota in 16 fecal samples from healthy humans with a vegetarian diet. Fungi were identified using molecular cloning, 454 pyrosequencing and a Luminex analyte specific reagent (ASR) assay, all targeting the ITS region of the rRNA genes. Fungi were detected in each fecal sample and at least 46 distinct fungal operational taxonomic units (OTUs) were detected, from two phyla — Ascomycota and Basidiomycota. Fusarium was the most abundant genus, followed by Malassezia, Penicillium, Aspergillus, and Candida. Commonly detected fungi such as Aspergillus and Penicillium, as well as known dietary fungi Agaricus bisporus and Ophiocordyceps sinensis, are presumed to be transient, allochthonous members due to their abundance in the environment or dietary associations. No single method identified the full diversity of fungi in all samples; pyrosequencing detected more distinct OTUs than the other methods, but failed to detect OTUs in some samples that were detected by cloning and/or ASR assays. ASRs were limited by the commercially available assays, but the potential to design new, optimized assays, coupled with speed and cost, makes the ASR method worthy of further study

    Gene family encoding the major toxins of lethal \u3ci\u3eAmanita\u3c/i\u3e mushrooms

    Get PDF
    Amatoxins, the lethal constituents of poisonous mushrooms in the genus Amanita, are bicyclic octapeptides. Two genes in A. bisporigera, AMA1 and PHA1, directly encode α-amanitin, an amatoxin, and the related bicyclic heptapeptide phallacidin, a phallotoxin, indicating that these compounds are synthesized on ribosomes and not by nonribosomal peptide synthetases. α-Amanitin and phallacidin are synthesized as proproteins of 35 and 34 amino acids, respectively, from which they are predicted to be cleaved by a prolyl oligopeptidase. AMA1 and PHA1 are present in other toxic species of Amanita section Phalloidae but are absent from nontoxic species in other sections. The genomes of A. bisporigera and A. phalloides contain multiple sequences related to AMA1 and PHA1. The predicted protein products of this family of genes are characterized by a hypervariable ‘‘toxin’’ region capable of encoding a wide variety of peptides of 7–10 amino acids flanked by conserved sequences. Our results suggest that these fungi have a broad capacity to synthesize cyclic peptides on ribosomes

    The MSDIN family in amanitin-producing mushrooms and evolution of the prolyl oligopeptidase genes

    Get PDF
    The biosynthetic pathway for amanitins and related cyclic peptides in deadly Amanita (Amanitace ae) mushrooms represents the first known ribosomal cyclic peptide pathway in the Fungi. Amanitins are found outside of the genus in distantly related agarics Galerina (Strophariaceae) and Lepiota (Agaricaceae). A long-standing question in the field persists: why is this pathway present in these phylogenetically disjunct agarics? Two deadly mushrooms, A. pallidorosea and A. subjunquillea, were deep sequenced, and sequences of biosynthetic genes encoding MSDINs (cyclic peptide presursor) and prolyl oligopeptidases (POPA and POPB) were obtained. The two Amanita species yielded 20 and 18 MSDINs, respectively. In addition, two MSDIN sequences were cloned from L. brunneoincarnata basidiomes. The toxin MSDIN genes encoding amatoxins or phallotoxins from the three genera were compared, and a phylogenetic tree constructed. Prolyl oligopeptidase B (POPB), a key enzyme in the biosynthetic pathway, was used in phylogenetic reconstruction to infer the evolutionary history of the genes. Phylogenenies of POPB and POPA based on both coding and amino acid sequences showed very different results: while POPA genes clearly reflected the phylogeny of the host species, POPB did not; strikingly, it formed a well supported monophyletic clade, despite that the species belong to different genera in disjunct families. POPA, a known house-keeping gene, was shown to be restricted in a branch containing on Amanita species and the phylogeny resembled that of those Amanita species. Phylogenetic analyses of MSDIN and POPB genes showed tight coordination and disjunct disdistribution. A POPB gene tree was compared with a corresponding species tree, and distances and substitution rates were compared. The results suggested POPB genes have significant smaller distances and substitution rates were compared. The result suggested POPB genes have significant smaller distances and rates than the house-keeping rpb2, discounting massive gene loss. Under this assumption, the consistently cluster Galerina and Amantia POPB genes, while Lepiota POPB is distant. Our result suggests that horizontal gene transfer (HGT), at least between Amanita and Galerian, was invovled in the acquisition of POPB genes, which may shed light on the evolution of the a-amanitin biosynthetic pathway

    Effects of fungicide application timing and cultivar resistance on Fusarium head blight and deoxynivalenol in winter wheat

    Get PDF
    Fusarium graminearum causes Fusarium head blight (FHB) in wheat. FHB reduces yield and quality and contaminates grain with the mycotoxin deoxynivalenol (DON). Effective management strategies are needed. The objectives of this research were to 1) Determine the effect of fungicide application timing at anthesis (the standard timing) and 6 and 12 days later on FHB and DON in the winter wheat cultivars Overley (susceptible) and Overland (moderately resistant) and 2) Compare the effects of a triazole and a strobilurin fungicide on FHB and DON in Overley and Overland. In 2015 two field trials (irrigated and rain-fed) were conducted in Nebraska, USA. The triazole Prosaro (prothioconazole + tebuconazole) and the strobilurin Headline (pyraclostrobin) were applied with a CO2-powered backpack sprayer at anthesis and 6 and 12 days later. A split plot design in randomized complete blocks with 4 replications was used. Main plots were cultivars and subplots were fungicide treatments. FHB index and DON were significantly (P \u3c 0.05) lower in Overland than in Overley. The window of fungicide application to control FHB and DON was widened from anthesis to 6 days later without loss of efficacy. Headline was less effective than Prosaro in controlling FHB and DON. Moderate resistance combined with a triazole fungicide most effectively reduced FHB and DON. The results indicate a wider fungicide application window and the effectiveness of combining resistance with a triazole fungicide

    Neck-motor interactions trigger rotation of the kinesin stalk

    Get PDF
    Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that releases ADP more slowly than wild type and shows weaker microtubule affinity, consistent with defective stalk rotation. Unexpectedly, crystal structures show the stalk fully rotated – neck-motor interactions destabilize the stalk, causing it to rotate and ADP to be released, and alter motor affinity for microtubules. A new structural pathway accounts for the coupling of stalk rotation – the force-producing stroke – to changes in motor affinity for nucleotide and microtubules. Sequential disruption of salt bridges that stabilize the unrotated stalk could cause the stalk to initiate and complete rotation in different nucleotide states

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Get PDF
    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.720.20+0.19×103eV2\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2 and sin2θ23=0.530.12+0.09\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12} (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.Comment: 10 pages, 7 figure
    corecore