782 research outputs found

    Engineered T Cells for the Adoptive Therapy of B-Cell Chronic Lymphocytic Leukaemia

    Get PDF
    B-cell chronic lymphocytic leukaemia (B-CLL) remains an incurable disease due to the high risk of relapse, even after complete remission, raising the need to control and eliminate residual tumor cells in long term. Adoptive T cell therapy with genetically engineered specificity is thought to fulfil expectations, and clinical trials for the treatment of CLL are initiated. Cytolytic T cells from patients are redirected towards CLL cells by ex vivo engineering with a chimeric antigen receptor (CAR) which binds to CD19 on CLL cells through an antibody-derived domain and triggers T cell activation through CD3ζ upon tumor cell engagement. Redirected T cells thereby target CLL cells in an MHC-unrestricted fashion, secret proinflammatory cytokines, and eliminate CD19+ leukaemia cells with high efficiency. Cytolysis of autologous CLL cells by patient's engineered T cells is effective, however, accompanied by lasting elimination of healthy CD19+ B-cells. In this paper we discuss the potential of the strategy in the treatment of CLL, the currently ongoing trials, and the future challenges in the adoptive therapy with CAR-engineered T cells

    The use of circulating cell-free tumor DNA in routine diagnostics of metastatic melanoma patients

    Get PDF
    Modern advances in technology such as next-generation sequencing and digital PCR make detection of minor circulating cell-free tumor DNA amounts in blood from cancer patients possible. Samples can be obtained minimal-invasively, tested for treatment-determining genetic alterations and are considered to reflect the genetic constitution of the whole tumor mass. Furthermore, tumor development can be determined by a time course of the quantified circulating cell-free tumor DNA. However, systematic studies which prove the clinical relevance of monitoring patients using liquid biopsies are still lacking. In this study, we collected 115 samples from 47 late stage melanoma patients over 1.5 years alongside therapy-associated clinical routine monitoring. Mutation status was confirmed by molecular analysis of primary tumor material. We can show that detectable levels of circulating cell-free tumor DNA correlate with clinical development over time. Increasing levels of circulating cell-free tumor DNA during melanoma treatment with either targeted therapy (BRAF/MEK inhibitors) or immunotherapy, during recovery time or the intervals between last treatment cycle and second-line treatment point towards clinical progression before the progression becomes obvious in imaging. Therefore, this is a further possibility to closely screen our patients for tumor progression during therapy, in therapy-free phases and in earlier stages before therapy initiation

    Outcomes of haploidentical stem cell transplantation for chronic lymphocytic leukemia: a retrospective study on behalf of the chronic malignancies working party of the EBMT

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (HCT) may result in long-term disease control in high-risk chronic lymphocytic leukemia (CLL). Recently, haploidentical HCT is gaining interest because of better outcomes with post-transplantation cyclophosphamide (PTCY). We analyzed patients with CLL who received an allogeneic HCT with a haploidentical donor and whose data were available in the EBMT registry. In total 117 patients (74% males) were included; 38% received PTCY as GVHD prophylaxis. For the whole study cohort OS at 2 and 5 yrs was 48 and 38%, respectively. PFS at 2 and 5 yrs was 38 and 31%, respectively. Cumulative incidence (CI) of NRM in the whole group at 2 and 5 years were 40 and 44%, respectively. CI of relapse at 2 and 5 yrs were 22 and 26%, respectively. All outcomes were not statistically different in patients who received PTCY compared to other types of GVHD prophylaxis. In conclusion, results of haploidentical HCT in CLL seem almost identical to those with HLA-matched donors. Thereby, haploidentical HCT is an appropriate alternative in high risk CLL patients with a transplant indication but no available HLA-matched donor. Despite the use of PTCY, the CI of relapse seems not higher than observed after HLA-matched HCT

    Stromal cells support the survival of human primary chronic lymphocytic leukemia (CLL) cells through Lyn-driven extracellular vesicles

    Get PDF
    Introduction In chronic lymphocytic leukemia (CLL), the tumor cells receive survival support from stromal cells through direct cell contact, soluble factors and extracellular vesicles (EVs). The protein tyrosine kinase Lyn is aberrantly expressed in the malignant and stromal cells in CLL tissue. We studied the role of Lyn in the EV-based communication and tumor support. Methods We compared the Lyn-dependent EV release, uptake and functionality using Lyn-proficient (wild-type) and -deficient stromal cells and primary CLL cells. Results Lyn-proficient cells caused a significantly higher EV release and EV uptake as compared to Lyn-deficient cells and also conferred stronger support of primary CLL cells. Proteomic comparison of the EVs from Lyn-proficient and -deficient stromal cells revealed 70 significantly differentially expressed proteins. Gene ontology studies categorized many of which to organization of the extracellular matrix, such as collagen, fibronectin, fibrillin, Lysyl oxidase like 2, integrins and endosialin (CD248). In terms of function, a knockdown of CD248 in Lyn+ HS-5 cells resulted in a diminished B-CLL cell feeding capacity compared to wildtype or scrambled control cells. CD248 is a marker of certain tumors and cancer-associated fibroblast (CAF) and crosslinks fibronectin and collagen in a membrane-associated context. Conclusion Our data provide preclinical evidence that the tyrosine kinase Lyn crucially influences the EV-based communication between stromal and primary B-CLL cells by raising EV release and altering the concentration of functional molecules of the extracellular matrix

    Sensitizing Protective Tumor Microenvironments to Antibody-Mediated Therapy

    Get PDF
    Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated malignancies. Here, we show that select microenvironments can underlie resistance to antibody-based therapy. Using a humanized model of treatment refractory B cell leukemia, we find that infiltration of leukemia cells into the bone marrow rewires the tumor microenvironment to inhibit engulfment of antibody-targeted tumor cells. Resistance to macrophage-mediated killing can be overcome by combination regimens involving therapeutic antibodies and chemotherapy. Specifically, the nitrogen mustard cyclophosphamide induces an acute secretory activating phenotype (ASAP), releasing CCL4, IL8, VEGF, and TNFα from treated tumor cells. These factors induce macrophage infiltration and phagocytic activity in the bone marrow. Thus, the acute induction of stress-related cytokines can effectively target cancer cells for removal by the innate immune system. This synergistic chemoimmunotherapeutic regimen represents a potent strategy for using conventional anticancer agents to alter the tumor microenvironment and promote the efficacy of targeted therapeutics.Massachusetts Institute of Technology. Ludwig Center for Molecular OncologyKathy and Curt Marble Cancer Research FundSingapore-MIT Alliance for Research and TechnologyGerman Research Foundation (KFO286)German Research Foundation (Fellowship)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051

    Spleen tyrosine kinase mediates innate and adaptive immune crosstalk in SARS-CoV-2 mRNA vaccination

    Get PDF
    Durable cell-mediated immune responses require efficient innate immune signaling and the release of pro-inflammatory cytokines. How precisely mRNA vaccines trigger innate immune cells for shaping antigen specific adaptive immunity remains unknown. Here, we show that SARS-CoV-2 mRNA vaccination primes human monocyte-derived macrophages for activation of the NLRP3 inflammasome. Spike protein exposed macrophages undergo NLRP3-driven pyroptotic cell death and subsequently secrete mature interleukin-1β. These effects depend on activation of spleen tyrosine kinase (SYK) coupled to C-type lectin receptors. Using autologous cocultures, we show that SYK and NLRP3 orchestrate macrophage-driven activation of effector memory T cells. Furthermore, vaccination-induced macrophage priming can be enhanced with repetitive antigen exposure providing a rationale for prime-boost concepts to augment innate immune signaling in SARS-CoV-2 vaccination. Collectively, these findings identify SYK as a regulatory node capable of differentiating between primed and unprimed macrophages, which modulate spike protein-specific T cell responses
    corecore