39 research outputs found

    Influence of HiPIMS pulse widths on the deposition behaviour and properties of CuAgZr compositionally graded films

    Get PDF
    In this work, the influence of different pulse widths (25, 50 and 100 μs) during high power impulse magnetron sputtering (HiPIMS) of copper, silver and zirconium was investigated in terms of plasma properties and properties of combinatorial composition gradient CuAgZr film libraries. In situ plasma diagnostics via optical emission spectroscopy (OES), time-of-flight mass spectrometry (TOFMS), and modified quartz crystal microbalance (m-QCM), followed by film ex situ X-ray diffraction (XRD) and scanning electron microscopy (SEM) investigations allowed to determine the effect of deposition parameters on the thin films' microstructural changes. Changing the pulse width, while keeping the duty cycle constant, modified the discharge composition in the target region and the ionised fraction of the sputtered species in the substrate region. The maximum Cu ionised fraction (19 %) was found for 50 μs, resulting in compact and smooth morphology for Cu-rich films, whereas short 25 μs pulses provided porous columnar films with rough surfaces, as the result from Ar+ bombardment. For Ag-rich films, Ag segregation allowed the deposition of dense layers, regardless of the used pulse width. Furthermore, low Ag (<10 at.%) CuAgZr films produced via HiPIMS and direct-current magnetron sputtering (DCMS) were compared in terms of structural and mechanical property changes as a function of Zr contents. For the studied chemical composition range, a linear relationship between Zr content, XRD phase shift and mechanical properties was observed for HiPIMS films, in contrast to DCMS's more abrupt transitions. An increase in hardness and elastic modulus (up to 44 % and 22 %, respectively) was found for the HiPIMS films compared to DCMS ones. The obtained results highlight HiPIMS's flexibility in providing a wide range of tailoring possibilities to meet specific application requirements, such as crystalline microstructure, density and associated mechanical properties

    From pulsed-DCMS and HiPIMS to microwave plasma-assisted sputtering: Their influence on the properties of diamond-like carbon films

    Get PDF
    The fabrication of high-hardness non-hydrogenated diamond-like carbon (DLC) via standard magnetron sputtering (MS) is often hindered by the low sputtering yields and ionisation rates of carbon, therefore investigations into pulsed alternatives of MS, else sputtered species post-ionisation methods, are of particular interest. This work focuses on investigating the influence of pulsed-direct current MS (pDCMS), high power impulse magnetron sputtering (HiPIMS) and their microwave plasma-assisted (MA-pDCMS, MA-HiPIMS) variants on the properties of the fabricated DLC films. Two setups were used for the pDCMS- and HiPIMS-based methods, respectively. The films were characterised using Raman spectroscopy, nanoindentation, X-ray reflectometry and scanning electron microscopy, where the pDCMS-produced films were additionally characterised by film-stress measurements. Moreover, in situ time-resolved Langmuir probe plasma analysis was performed under HiPIMS and MA-HiPIMS conditions to analyse the influence of the magnetron and microwave plasmas on one another. For both DCMS- and HiPIMS-based procedures, it was found that the addition of microwave plasma did not facilitate attaining hardnesses beyond 30 GPa, however, it did enable modifying the morphology of the films. Furthermore, this study shows the potential of synchronised sputtering with substrate biasing, as well as the importance of microwave plasma source positioning in relation to the substrate

    Deposition and characterisation of c-axis oriented AlScN thin films via microwave plasma-assisted reactive HiPIMS

    Get PDF
    In this work, we demonstrate that highly oriented c-axis aluminium scandium nitride (AlScN) piezoelectric thin films can be deposited via microwave plasma-assisted reactive high power impulse magnetron sputtering (MAR-HiPIMS), without the necessity of substrate heating. A combination of in situ plasma diagnostics, i.e. time-of-flight mass spectrometry (ToF-MS), modified quartz crystal microbalance (m-QCM), and magnetic field measurements allowed to optimise the deposition conditions, in turn maximising the nitrogen supply and ionic flux at the substrate region, while maintaining stable discharge conditions. The AlScN thin films synthesised in this study were deposited as chemically gradient coatings with varying levels of scandium doping, and were characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Obtaining highly textured films was made possible with the addition of microwave plasma to the optimised HiPIMS discharge, where the wurtzite AlScN films (with up to 20 at. % Sc) exhibited a stronger texture in the (0002) orientation compared to films prepared without microwave plasma. Additionally, the use of a microwave plasma led to a significant decrease in oxygen content in the films and increase in nitrogen content, ensuring stoichiometric compositions. Based on the results mentioned above, it is expected that the AlScN thin films fabricated via MAR-HiPIMS would exhibit a strong piezoelectric response

    A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera

    Get PDF
    The work was supported by NERC grants NE/I006176/1 (Gavin L. Foster and Caroline H. Lear), NE/H006273/1 (Gavin L. Foster), NE/I006168/1 and NE/K014137/1 and a Royal Society Research Merit Award (Paul A. Wilson), a NERC Independent Research Fellowship NE/K00901X/1 (Mathis P. Hain) and a NERC studentship (Rosanna Greenop).The boron isotope composition (δ11B) of foraminiferal calcite reflects the pH and the boron isotope composition of the seawater the foraminifer grew in. For pH reconstructions, the δ11B of seawater must therefore be known, but information on this parameter is limited. Here we reconstruct Neogene seawater δ11B based on the δ11B difference between paired measurements of planktic and benthic foraminifera and an estimate of the coeval water column pH gradient from their δ13C values. Carbon cycle model simulations underscore that the ΔpH-Δδ13C relationship is relatively insensitive to ocean and carbon cycle changes, validating our approach. Our reconstructions suggest that δ11Bsw was ∼37.5‰ during the early and middle Miocene (roughly 23-12 Ma) and rapidly increased during the late Miocene (between 12 and 5 Ma) towards the modern value of 39.61 ‰. Strikingly, this pattern is similar to the evolution of the seawater isotope composition of Mg, Li and Ca, suggesting a common forcing mechanism. Based on the observed direction of change, we hypothesize that an increase in secondary mineral formation during continental weathering affected the isotope composition of riverine input to the ocean since 14 Ma.Publisher PDFPeer reviewe

    An extensive phenotypic characterization of the hTNFα transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor necrosis factor alpha (TNFα) is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα) have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line.</p> <p>Results</p> <p>In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα.</p> <p>Conclusion</p> <p>These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.</p

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link

    Resist-Free E-beam Lithography for Patterning Nanoscale Thick Films on Flexible Substrates

    No full text
    Resist-based lithographic tools, such as electron beam (e-beam) and photolithography, drive today’s state-of-the-art nanoscale fabrication. However, the multistep nature of these processes, expensive resists, and multiple other consumables limit their potential for cost-effective nanotechnology. Here, we report a one-step, resist-free, and scalable methodology for directly structuring thin metallic films on flexible polymeric substrates via e-beam patterning. Controlling e-beam dose results in nanostructures as small as 5 nm in height with a sub-micrometer lateral resolution. We structure nanoscale thick films (100 nm) of Al, TiN, and Au on standard Kapton tape to highlight the universal use of our nanopatterning methodology. Further, we utilize direct e-beam writing to create various high-resolution biomimetic surfaces directly onto ceramic thin films. In addition, we assemble architectured mechanical metamaterials comprising crack “traps”, which confine cracks and prevent overall material/device failure. Such a resist-free lithographic tool can reduce fabrication cost dramatically and may be used for different applications varying from biomimetic and architectured metamaterials to strain-resilient flexible electronics and wearable devices

    Records of Neogene ocean carbonate chemistry using the boron isotope pH proxy

    No full text
    Over the course of the Neogene, the Earth underwent profound climatic shifts from the sustained warmth of the middle Miocene to the development of Plio-Pleistocene glacial-interglacial cycles. Major perturbations in the global carbon cycle have occurred alongside these shifts, however the lack of long- term carbonate system reconstructions currently limits our understanding of the link between changes in CO2, carbon cycling, and climate over this time interval. Here we reconstruct continuous surface ocean pH, CO2, and surface ocean aragonite saturation state using boron isotopes from the planktonic foraminifer Trilobatus trilobus and we perform a sensitivity analysis of the key variables in our calculations (e.g. δ11Bsw, [Ca]sw, CCD). We show that the choice of δ11Bsw influences both seawater pH and CO2 while [Ca]sw reconstructed dissolved inorganic carbon exerts a significant influence only on CO2. Over the last 22 Myr, the lowest pH levels occurred in the Middle Miocene Climate Optimum (MMCO; 17-14 Myr ago) reaching ∼7.6 ± 0.1 units in all our scenarios. The extended warmth of the MMCO corresponds to mean CO2 and aragonite saturation state levels of 470-630 ppm and 2.7-3.5, respectively. Despite a general correspondence between our CO2 record and climate, all CO2 scenarios show a peak at ∼9 Ma not matched by corresponding changes in climate reconstructions. This may suggest decoupling (i.e. significant CO2 change without a discernible climate response) for a limited interval in the Late Miocene (11.6-8.5 Ma), although further refinement of our understanding of the temporal evolution of the boron isotopic composition of seawater is necessary to fully evaluate the nature of the relationship between CO2 and climate. Nonetheless, from our long-term view it is clear that low-latitude open ocean marine ecosystems are unlikely to have experienced sustained surface pH and saturation levels below 7.7 and 1.7, respectively, during the past 14 million years (66% CI)
    corecore