430 research outputs found

    An alternative local polynomial estimator for the error-in-variables problem

    Full text link
    We consider the problem of estimating a regression function when a covariate is measured with error. Using the local polynomial estimator of Delaigle, Fan, and Carroll (2009) as a benchmark, we propose an alternative way of solving the problem without transforming the kernel function. The asymptotic properties of the alternative estimator are rigorously studied. A detailed implementing algorithm and a computationally efficient bandwidth selection procedure are also provided. The proposed estimator is compared with the existing local polynomial estimator via extensive simulations and an application to the motorcycle crash data. The results show that the new estimator can be less biased than the existing estimator and is numerically more stable

    Dissimilarity measures for content-based image retrieval

    Get PDF
    Dissimilarity measurement plays a crucial role in content-based image retrieval. In this paper, 16 core dissimilarity measures are introduced and evaluated. We carry out a systematic performance comparison on three image collections, Corel, Getty and Trecvid2003, with 7 different feature spaces. Two search scenarios are considered: single image queries based on the vector space model, and multi-image queries based on k-nearest neighbours search. A number of observations are drawn, which will lay a foundation for developing more effective image search technologies

    Molecular characterization and ligand binding specificity of the PDZ domain-containing protein GIPC3 from Schistosoma japonicum

    Get PDF
    BACKGROUND: Schistosomiasis is a serious global health problem that afflicts more than 230 million people in 77 countries. Long-term mass treatments with the only available drug, praziquantel, have caused growing concerns about drug resistance. PSD-95/Dlg/ZO-1 (PDZ) domain-containing proteins are recognized as potential targets for the next generation of drug development. However, the PDZ domain-containing protein family in parasites has largely been unexplored. METHODS: We present the molecular characteristics of a PDZ domain-containing protein, GIPC3, from Schistosoma japonicum (SjGIPC3) according to bioinformatics analysis and experimental approaches. The ligand binding specificity of the PDZ domain of SjGIPC3 was confirmed by screening an arbitrary peptide library in yeast two-hybrid (Y2H) assays. The native ligand candidates were predicted by Tailfit software based on the C-terminal binding specificity, and further validated by Y2H assays. RESULTS: SjGIPC3 is a single PDZ domain-containing protein comprised of 328 amino acid residues. Structural prediction revealed that a conserved PDZ domain was presented in the middle region of the protein. Phylogenetic analysis revealed that SjGIPC3 and other trematode orthologues clustered into a well-defined cluster but were distinguishable from those of other phyla. Transcriptional analysis by quantitative RT-PCR revealed that the SjGIPC3 gene was relatively highly expressed in the stages within the host, especially in male adult worms. By using Y2H assays to screen an arbitrary peptide library, we confirmed the C-terminal binding specificity of the SjGIPC3-PDZ domain, which could be deduced as a consensus sequence, -[SDEC]-[STIL]-[HSNQDE]-[VIL]*. Furthermore, six proteins were predicted to be native ligand candidates of SjGIPC3 based on the C-terminal binding properties and other biological information; four of these were confirmed to be potential ligands using the Y2H system. CONCLUSIONS: In this study, we first characterized a PDZ domain-containing protein GIPC3 in S. japonicum. The SjGIPC3-PDZ domain is able to bind both type I and II ligand C-terminal motifs. The identification of native ligand will help reveal the potential biological function of SjGIPC3. These data will facilitate the identification of novel drug targets against S. japonicum infections

    Additive Manufacturing of Complexly Shaped SiC with High Density Via Extrusion-Based Technique – Effects of Slurry Thixotropic Behavior and 3D Printing Parameters

    Get PDF
    Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 powders, 0.25 wt% dispersant and 0.01 wt% defoamer. The printing parameters studied included extrusion pressure, nozzle size, layer height and printing speed; the one that had the most prominent effect on filament width and height was indicated as layer height. The nozzle inner diameter of 1.04 mm, speed of 350 mm/min, layer height of 0.7 mm and extrusion air pressure of 0.31 MPa were the optimal printing parameters. Furthermore, the relationship between the printing parameters and the filament dimensions was successfully predicted by using machine learning and grey system theory. Finally, the relative density of the printed SiC parts sintered at 1900 oC reached 94.7±1.5%

    Electromagnetic Structure of the Neutron from Annihilation Reactions

    Get PDF
    The investigation of the fundamental properties of the nucleon is one of the most important topics in the modern hadron physics. Its internal structure and dynamics can be studied through the measurement of electromagnetic form factors which represent the simplest structure observables and serve as a test ground for our understanding of the strong interaction. Since the first attempt to measure the time-like form factors of the neutron, only four experiments published results on its structure from annihilation reactions. Due to the lack of statistics and experimental challenges, no individual determination of the form factors of the neutron has been possible so far. Modern developments of electron-positron colliders and the associated detectors allow to measure the effective FF of the neutron with the process e+e−→nn¯ with unprecedented precision at the BESIII experiment, which is based at the BEPCII collider in Beijing, China. In this report, we review the published results of the form factors on the neutron in the time-like regime, describe the experimental setup, and discuss their impact on our understanding of the strong interaction. Future works at BESIII will help to improve the precision of the neutron FFs and, combined with theoretical progress in this field, help to illuminate the properties of the neutron structure
    corecore