5 research outputs found

    System-on-Package Low-Power Telemetry and Signal Conditioning unit for Biomedical Applications

    Get PDF
    Recent advancements in healthcare monitoring equipments and wireless communication technologies have led to the integration of specialized medical technology with the pervasive wireless networks. Intensive research has been focused on the development of medical wireless networks (MWN) for telemedicine and smart home care services. Wireless technology also shows potential promises in surgical applications. Unlike conventional surgery, an expert surgeon can perform the surgery from a remote location using robot manipulators and monitor the status of the real surgery through wireless communication link. To provide this service each surgical tool must be facilitated with smart electronics to accrue data and transmit the data successfully to the monitoring unit through wireless network. To avoid unwieldy wires between the smart surgical tool and monitoring units and to reap the benefit of excellent features of wireless technology, each smart surgical tool must incorporate a low-power wireless transmitter. Low-power transmitter with high efficiency is essential for short range wireless communication. Unlike conventional transmitters used for cellular communication, injection-locked transmitter shows greater promises in short range wireless communication. The core block of an injection-locked transmitter is an injection-locked oscillator. Therefore, this research work is directed towards the development of a low-voltage low-power injection-locked oscillator which will facilitate the development of a low-power injection-locked transmitter for MWN applications. Structure of oscillator and types of injection are two crucial design criteria for low-power injection-locked oscillator design. Compared to other injection structures, body-level injection offers low-voltage and low-power operation. Again, conventional NMOS/PMOS-only cross-coupled LC oscillator can work with low supply voltage but the power consumption is relatively high. To overcome this problem, a self-cascode LC oscillator structure has been used which provides both low-voltage and low-power operation. Body terminal coupling is used with this structure to achieve injection-locking. Simulation results show that the self-cascode structure consumes much less power compared to that of the conventional structure for the same output swing while exhibiting better phase noise performance. Usage of PMOS devices and body bias control not only reduces the flicker noise and power consumption but also eliminates the requirements of expensive fabrication process for body terminal access

    A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Get PDF
    An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications

    Modified Hermite Pulse-Based Wideband Communication for High-Speed Data Transfer in Wireless Sensor Applications

    No full text
    With technological advances in the field of communication, the need for reliable high-speed data transfer is increasing. The deployment of large number of wireless sensors for remote monitoring and control and streaming of high definition video, voice and image data, etc. are imposing a challenge to the existing network bandwidth allocation for reliable communication. Two novel schemes for ultra-wide band (UWB) communication technology have been proposed in this paper with the key objective of intensifying the data rate by taking advantage of the orthogonal properties of the modified Hermite pulse (MHP). In the first scheme, a composite pulse is transmitted and in the second scheme, a sequence of multi-order orthogonal pulses is transmitted in the place of a single UWB pulse. The MHP pulses exhibit a mutually orthogonal property between different ordered pulses and due to this property, simultaneous transmission is achieved without collision in the UWB system, resulting in an increase in transmission capacity or improved bit error rate. The proposed schemes for enhanced data rate will offer high volume data monitoring, assessment, and control of wireless devices without overburdening the network bandwidth and pave the way for new platforms for future high-speed wireless sensor applications
    corecore