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An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model
has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking
models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have
been reproduced by adjusting the parameters associated with the model at hand.This paper also presents a modified interpretation
of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range
offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different
spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes
it very suitable for biomedical applications.

1. Introduction

In light of the successful strides achieved in biomedical tech-
nology in the last couple of decades, the 21st century is expe-
riencing intensified demands in ultralow current biosensors
as it has become increasingly apparent that ultralow current
sensors play a critical role in many bioapplications, especially
those aimed at biosensing systems. The ultralow current
sensors are frequently used in areas such as clinical diagnosis,
genome research, drug development [1], surveying systems,
metabolite activity monitoring [2], and bioelectrochemical
sensors [3].

State-of-the-art biosensors offer numerous advantages in
the form of high selectivity, high sensitivity, large dynamic
range, lower response time, simple calibration techniques,
field reconfigurability, reproducibility, stability, low power
consumption, and low manufacturability cost. A neuron’s
capability of sensing changes in environment is exception-
ally explicit and exquisitely sensitive [4], doing such with
flying initial response times, which are usually as short
as milliseconds. A lot of effort has already been put into

the advancement of spike based neuron sensor applica-
tions such as tactile sensing [5], biomolecular detections
[6], and capacitive biosensor [7]. Due to the compensa-
tions mentioned above an ultralow current detection sensor
based on neural spiking model has been introduced in this
paper.

The neuron spiking model is based on the Izhikevich
neuron model which offers similar biological plausibility as
the Hodgkin-Huxley model but with superior computational
efficiency as the integrate-and-fire model. The mathematical
model of the Izhikevich neuron model is given in [8]. A
crucial advantage of this model is that one can easily generate
different spiking features of a neuron by varying only a hand-
ful number of parameters, as we have produced four different
spiking features: regular spiking, chattering, neostriatal spiny
projection, and modified regular spiking. Among them the
modified regular spiking is analogous to the regular spiking
feature but with improved range of input sensing current.
A notable observation here is that the spiking features of
this particular neuron model are always triggered at ultralow
current, usually in the picoampere (pA) to nanoampere (nA)
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Figure 1: System overview of the proposed neuron model based low current sensing system.

range, rendering it a very suitable candidate for ultralow
current sensing applications. Hence, in this paper a neural
spiking based biosensor has been proposed which has a 2 pA
to 8 nA input sensing current range with high linearity.

This paper is organized as follows. Sections 2 and 3 briefly
describe the model architecture and sensor characteristics,
respectively, while Section 4 introduces the Izhikevich neu-
ron model and explains the four spiking features mentioned
above. Section 5 illustrates the results of the neuron model
output frequency spectrum and the linearity of the four
extracted spike features. Finally, in Section 6, the paper is
summarized.

2. Sensor System Architecture

Due to the progressive strides made in biomedical tech-
nology, especially in the field of biosensor research and
production, the significance and demand for innovative and
efficient ultralow current sensors are more than ever before.
The overall low current sensor architecture of the proposed
system model consists of the three blocks, sensor, neuron
model, and monitoring device, which has been presented
in Figure 1. Bioelectrochemical sensors are widely used to
determine analyte concentrations as such measurements
are crucial for the study of biological systems along with
the development of tools used in disease diagnosis and
treatment. On the other hand, with the help of amperometric
sensors, it is possible to measure oxygen concentration in
blood. There are other biosensors that include DNA sensors
and metabolite monitoring sensors. The DNA microarrays
developed in recent years are comprehensively used in the
field of genome research and drug development. Moreover,
remote monitoring systems can be employed to monitor
various metabolites in an animal model [2]. The current
detected by sensor is fed to a neuron model which in turn
fires different spike features, where the frequency of the spikes
can be controlled by this firing input current. Neocortical

neurons in themammalian brain can be classified into several
types of prominent features according to the pattern of
spiking and bursting observed in intracellular recordings.
Among the various features of biological spiking neuron,
the following neuron spiking patterns are extracted: regular
spiking, chattering, and neostriatal spiny projection. The
Izhikevich neuron model has been used for its superior
computational efficiency and greater biological plausibility.
All the spiking features mentioned above have been gen-
erated by modifying the parameters associated with the
model at hand. This paper introduces a modified version of
the regular spiking feature achieved by altering the model
parameters. The modified regular spiking firing pattern is
similar to that of the regular spiking but with upgraded
dynamic range. Lastly the output of the mentioned spiking
features is simply a variation in frequency permitted by the
input sensing current which is examined in a monitoring
device.

3. Sensors

It has become increasingly apparent that ultralow current
sensors play a critical role in many bioapplications, especially
those aimed at biosensing systems. Due to the biomedical
technology advances since the past century, ultralow cur-
rent sensor is believed to be one of the most promising
industries in the coming decades along with micro- and
nanoelectronics industries. Such developments in biosensor
research and production have greatly aggravated the demand
of ultralow current sensors which are frequently used in
areas such as clinical diagnosis, DNA probing, surveying
systems, and protein activity monitoring. In recent times,
electrochemical biosensors are being extensively employed
to determine analyte concentrations in both research and
commercial applications [9], as analyte concentration mea-
surements are essential for the study of biological systems
and the development of tools for disease diagnosis and
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treatment. These bioelectrochemical sensors have the ability
to identify the protein activity both directly [10] and indi-
rectly through reaction coupling [11, 12] to greatly enhance
the range of protein classes that can be used as biological
recognition elements (BREs). Moreover, an amperometric
chemical sensor can be used to measure the concentration
of oxygen in blood [13]. In addition to the amperometric
chemical sensors, there are other biosensors that are being
reported bymany distinguished literatures such asmetabolite
monitoring sensors [2] and DNA molecule based biosensors
[14, 15].

3.1. Amperometric Sensors. Although optical measurement
techniques are widely used in biosensor technology, BREs
with electrically coupled outputs offer quite a few benefits
which include less or no sample preparation requirement and
elimination of performance limiting optical interference and
its suitability for chip-level integration of the whole analysis
platform [3]. However, to enable cost effective implantation
of such high performance bioelectrochemical sensor arrays,
some breakthroughs have to be achieved first. In order
to accommodate the variable response of various BREs,
the system interface must support a large signal range. A
bioelectrochemical circuit arraymicrosystemusually consists
of a reference electrode, a counter electrode, and an array of
working electrodes. The amperometric readout system and
the electrode drive system work in tandem to realize the
electrochemical potentiostat functions. The electrodes have
to be compatible with post-CMOS processing as they must
also sustain a reliable interface with subsequently applied
biological materials. For the purpose of amperometric detec-
tion, most bioelectronics interfaces require an input current
ranging from 10 pA to 10 𝜇A [3].

3.2. Metabolite Monitoring Sensors. As the name suggests,
a metabolite monitoring sensor is capable of detecting
single-metabolites in an animal model. Remote metabolism
monitoring systems can monitor different metabolites such
as glucose, lactate, glutamate, and Adenosine Triphosphate
(ATP) [2]. Lately, ATP has been linked with the regulation of
adaptive immune responses [16] while glutamate is generally
associated with brain damage [17], which itself is a crucial
neurotransmitter. To improve the performance of metabolite
monitoring sensors, different nanomaterials have been con-
sidered such as graphene [18], nanoparticles [19], conductive
polymers [20], and Carbon Nanotubes (CNT) [21]. CNT, of
late, has demonstrated its ability to enhance the sensitivity
for exogenous [22] and endogenous [23] metabolites. The
bionanosensor in [2] consists of two coimmobilized enzymes
such as glucose oxidase and hexokinase, to monitor the
ATP levels. This sensor demonstrates an ATP sensitivity of
34 pA/𝜇Mmm2 and a range of 200 𝜇M to 1400 𝜇M, which is
in sync with our proposed sensor model.

3.3. DNA Sensors. In recent biotechnology development,
DNA sensor has been more important in genetic research
such as cancer or hereditary disease, medicine development,
detection of infectious agents, and identification in forensic

cases [24–27]. DNA sensor array investigates the absence or
presence of specific DNA sequence in given sample DNA.
DNA microsensor chip is usually made of polymer material,
glass, silicon, and so forth. Nowadays, most DNA sensor
uses polymerase chain reaction (PCR) amplification but it
has some limitations like being expensive, complex, time
consuming, and so forth. To overcome those limitations,
a new technique has been developed which is biobarcode
DNA sensor [28]. The biobarcode DNA sensor system
is used in both protein and nucleic acid detection. The
DNA microsensor detected current ranges from 10−12 A to
10
−7 A, which is in agreement with the proposed sensor

model.

4. Neuron Model and Architecture

In recent times one can observe a swing of emphasis in
the artificial neural network community in the direction of
spiking neural networks. Inspired by biological innovations,
pulse-coupled neural networks alongside spike-timing are
considered by numerous studies as a crucial component in
the information processing performed by the brain. To get a
proper understanding of how the brain actually works, it is
essential that the experimental studies of animal and human
nervous system are incorporated with numerical simulation
of large scale brain models. Twenty of the most prominent
features of biological spiking neurons, such as tonic spiking,
regular spiking, phasic spiking, chattering, tonic bursting,
phasic bursting, spike frequency adaptation, spike latency,
and subthreshold oscillations, have been reviewed in [29],
which illustrated the richness and complexity of the spik-
ing behavior of individual neuron in response to simple
dc current pulses. Before deciding on putting a particular
neural model to use, it has to testify that the model is
biophysically meaningful with measurable parameters while
at the same time exhibiting autonomous chaotic activity. In
[29], a comparison of the neurocomputational properties
has been presented of several well-known spiking neuron
models consisting of integrate-and-fire, integrate-and-fire-
or-burst, resonate-and-fire, Izhikevich, Morris-Lecar, Wil-
son, Hodgkin-Huxley, and so forth. It is evident from the
comparison that the Hodgkin-Huxley model [30] is the most
biophysically accurate but computationally prohibitive due
to the fact that it can simulate a very limited number of
neurons in real time. While the integrate-and-fire model
is computationally effective, it is unrealistically simple and
fails to reproduce most of the neurocomputational features
exhibited by cortical neurons. The motivation for selecting
the Izhikevich neuron model is that it offers the same
level of biological plausibility as the Hodgkin-Huxley model
while being computationally efficient as the integrate-and-fire
model.The Izhikevich model is simple enough in a computa-
tional perspective and capable of replicating the rich firing
patterns exhibited by real biological neurons. Bifurcation
methodologies [8] offer the ability to condense the various
biophysically accurate Hodgkin-Huxley type neuron models
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Figure 2: Spiking pattern of regular spiking neuron at 70 pA.

into a 2D system of ordinary differential equations which is
given in the following:

𝐶
𝑑V
𝑑𝑡
= 𝑘 (V − V

𝑟
) (V − V

𝑡
) − 𝑢 + 𝐼, (1)

𝑑𝑢

𝑑𝑡
= 𝑎 {𝑏 (V − V

𝑟
) − 𝑢} , (2)

with the after-spike resetting

if , V > Vpeak, then, V←󳨀 𝑐, (3)

𝑢 ←󳨀 𝑢 + 𝑑, (4)

where V and 𝑢 are dimensionless variables that represent
a neuron’s membrane potential and membrane recovery
current, respectively.The latter is accounted for the activation
of K+ ionic currents and inactivation of Na+ ionic currents,
while also providing negative feedback to V. According to
(4), both V and 𝑢 are reset after the spike reaches its peak.
Constant 𝑘 can be found when a neuron’s rheobase and
input resistance are known. Vpeak is the voltage that aids us
in avoiding amplitude jitter related to the finite time step
in the simulations. In the equation above, 𝐶, V

𝑟
, and V

𝑡
are

the membrane capacitance, the resting membrane potential,
and the instantaneous threshold potential, respectively. 𝐼 is
the synaptic or injected current from a sensor. Equation (1)
enables us to produce a waveform in which all the spike
feature information is available and from which it is possible
to find the frequency of the spikes.The frequency of the spikes
can be altered by the sensor current, 𝐼. Last but not least 𝑎, 𝑏,
𝑐, and 𝑑 are parameters which are dimensionless in nature.
Parameter 𝑎 describes the time scale of the recovery variable
𝑢. Smaller values of 𝑎 will in fact result in slower recovery.
Parameter 𝑏 represents the sensitivity of the recovery variable
𝑢 to the subthreshold fluctuations of the membrane potential
V. Higher values of 𝑏 will couple V and 𝑢more strongly which
in turn will result in possible subthreshold oscillations and
low-threshold spiking dynamics. The sign of this parameter,
whether positive or negative, determines if 𝑢 is an amplifying

variable or not. Parameter 𝑐 signifies the after-spike reset
value of V resulting from the high threshold K+ conductances.
Parameter 𝑑 is designated to the after-spike reset of the
recovery variable𝑢. All these parameters can be easily tailored
to replicate any particular neuron spiking feature. In this
study, such parameters have been varied to simulate the
following neural firing patterns: regular spiking, chattering,
neostriatal spiny neuron, and modified regular spiking.

4.1. Regular Spiking. Regular spiking neurons fire tonic spikes
that adapt their frequency in response to the sensor current.
Morphologically, these particular neurons are spiny stellate
cells found in layer 4 and pyramidal cells from layers 2, 3, 5,
and 6 [8]. To extract the qualitative and quantitative features
of typical regular spiking neurons, the resting membrane
potential of V

𝑟
= −60mV and the instantaneous threshold

potential of V
𝑡
= −40mV have been perceived. Any

instantaneous value above −40mV causes the neuron to fire.
The rheobase and the input resistance have been set at 50 pA
and 80MΩ, respectively, which result in 𝑘 = 0.7 and 𝑏 = −2.
The membrane capacitance, 𝐶 = 100 pF, yields a membrane
time constant value of 8ms. The value of 𝑑 is 100. Due to the
negative value of 𝑏, depolarization of V decreases the value of
𝑢. The inactivation time constant, 𝐼

𝐴
, is approximately 30ms

in the subthreshold voltage range; hence 𝑎 = 0.03∼1/30.
During a spike themembrane potential, V, of a typical regular
spiking neuron reaches a maximum or peak value of Vpeak =
+35mV which is shown in Figure 2. The voltage reset value,
𝑐, is set at −50mV and the input current is 70 pA.

4.2. Chattering. Chattering neurons are commonly referred
to as Fast Rhythmic Bursting (FRB) due to their ability to
fire high frequency bursts of spikes which have relatively
short interburst periods.Themagnitude of the sensor current
determines the interburst period. So it is safe to say that one
can control the interburst period by leveraging the amount of
current that flows through the sensor in use. Such neurons are
found in the visual cortex of adult cats and morphologically
they are spiny stellate or pyramidal neurons of layers 2, 3,
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Figure 3: Spiking pattern of chattering neuron at 500 pA.
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Figure 4: Spiking pattern of neostriatal spiny projection at 500 pA.

and 4, respectively. To replicate the features of chattering
spiking neurons it has been observed that, in [8], the resting
membrane potential V

𝑟
, instantaneous threshold potential V

𝑡
,

and recovery time constant 𝑎 are unchanged at −60mV,
−40mV, and 0.03, respectively, while membrane capacitance
𝐶 = 50 pF, 𝑘 = 1.5, 𝑏 = 1, and 𝑑 = 150 are also used. The
membrane potential of a typical chattering spiking neuron
reaches a peak value of Vpeak = +25mV which is shown in
Figure 3, as the voltage reset value 𝑐 is set at −40mV or lower
and an input current of 500 pA.

4.3. Neostriatal Spiny Projection. Neostriatal spiny projection
neuron displays a prominent bistable behavior in vivo. The
simulation results of the spiny neurons to current pulses have
been presented in [8]. The values of V

𝑡
and V
𝑟
have been set at

−25mV and −80mV, respectively, while 𝑘 = 1 and 𝑏 = −20
in order to achieve an input resistance of 30MΩ and rheobase
current of 300 pA.The recovery time constant 𝑎 = 0.01which
points to the slow inactivation of K+. From Figure 4, it has
been observed that Vpeak = +40mV during spikes and the
voltage reset value 𝑐 is set at −55mV or lower depending

on the firing frequency. A value of 𝑑 = 150 and an input
current of 500 pA ensure a reasonable match of the interspike
frequencies for all the values of the sensor current.

4.4. Modified Regular Spiking. The modified regular spiking
firing pattern is very much alike to that of the regular spiking
but it has better dynamic range than its predecessor. The
parameter values set for the extraction of the regular spiking
model at 𝐶 = 100 pF, V

𝑡
= −40mV, 𝑎 = 0.03, 𝑏 = −2,

𝑐 = −50mV, and Vpeak = +35mV are unchanged, while
𝑘 = 0.9, V

𝑟
= −40mV, and 𝑑 = 150 are changed to

generate the modified regular spiking feature. Figure 5 shows
firing pattern of the modified regular spiking where the input
sensing current is 70 pA.

5. Results and Discussion

To analyze the performance of the Izhikevich neuron model,
it has been designed and simulated in MATLAB simulink.
The corresponding simulink model has been presented in
Figure 6. The time domain signal output generated by the
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Figure 5: Spiking pattern of modified regular spiking at 70 pA.
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Figure 6: Simulink model of Izhikevich neuron model with sensing current.

neuron model has been subsequently converted to frequency
domain by performing FFT.

Figure 7(a) presents the frequency spectrum of the reg-
ular spiking neuron at 70 pA input sensor current. It can be
clearly seen from the figure that the peak magnitude of the
spectrum is approximately 11 dB which is found at 7.33Hz.
In Figure 7(b), we find a peak magnitude of 14 dB at 13.33Hz
from the frequency spectrum of the regular spiking neuron at
100 pA sensor current.The frequency spectrum of the regular
spiking neuron at Figure 7(c) exhibits a peak magnitude of

15 dB at a frequency of 14Hz. The sensor current is set at
300 pA in this instance.

Figures 8(a), 8(b), and 8(c) present the frequency spectra
of the chattering neuron for sensor currents 250 pA, 400 pA,
and 500 pA, respectively. For a sensor current of 250 pA, the
peak magnitude of 15 dB is observed at 14Hz. For increased
values of sensor currents set at 400 pA and 500 pA, the
corresponding frequency spectrums show peak magnitude
values of 15 dB and 17.3 dB, which are found at frequencies
18Hz and 24Hz, respectively.
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Table 1: The range of input sensing current and output frequency of four neuron spiking features.

Neuron spiking model Range of sensing current (pA) Input dynamic range (dB) Output frequency (Hz) Output linearity, 𝑅-square
Regular spiking 60 to 6000 40 5 to 1818 0.9816
Chattering 200 to 520 8.29 6.66 to 25 0.9989
Neostriatal spiny projection 400 to 6000 23.52 20 to 1818 0.9918
Modified regular spiking 2 to 8000 72.04 1.47 to 700 0.9665
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Figure 7: Regular spiking frequency spectrum for (a) 70 pA, (b) 100 pA, and (c) 300 pA.

The frequency spectrum of the neostriatal spiny pro-
jection is presented in Figure 9(a). For a sensor current of
500 pA the spectrum shows a peak value of 12 dB at 21Hz.
Figures 9(b) and 9(c) show the frequency spectrum of the
same neuron feature where sensor currents are set at 1000 pA
and 1500 pA, respectively. It is evident from the figures that
the input sensing current is increased and the frequency at
which the peak magnitude is found gets shifted to a higher
value of its own. Sensor currents of 1000 pA and 1500 pA yield
peak magnitude values of 17 dB and 20 dB, which are found
at 62.5Hz and 100Hz, respectively.

At last, the frequency spectrum of the modified regular
spiking neuron is depicted in Figures 10(a), 10(b), and 10(c)
for sensor currents 70 pA, 100 pA, and 300 pA, respectively.

For a sensor current of 70 pA, the peak magnitude of 13.5 dB
is observed at 13Hz. Higher values of sensor currents set at
100 pA and 300 pA produce peak magnitudes of 13 dB and
17 dB found at higher values of frequencies at 17Hz and 40Hz,
respectively.

Table 1 summarizes the range of input sensing currents,
input sensing current dynamic ranges, output frequencies,
and the output linearities for the different neuron spiking
features discussed in the previous sections. Regular spiking
neuron offers the best output frequency range spanning from
5Hz to 1818Hz while the chattering neuron has the smallest
of the four, ranging from 6.66Hz to 25Hz. On the other
hand modified regular spiking model can work with the least
amount of sensing current valued at only 2 pA and ranges
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Figure 8: Chattering spiking frequency spectrum for (a) 250 pA, (b) 400 pA, and (c) 500 pA.

up to 8000 pA. While it has the widest input sensing current
range, its output frequency range of 1.47Hz to 700Hz is
way off from the range observed with the regular spiking
neuron.

As shown in Figure 11, the input sensing current of
the regular spiking varies from 60 pA to 5000 pA, while
the frequency of the output neural spikes changes from
5Hz to 1818Hz. The 𝑥-axis in the figure has been set at
logarithmic scale. In order to check the linearity of the input
sensing current versus the output frequency, a fourth degree
polynomial equation shown in (5) has been used, where𝑋 is
input sensing current and 𝑌 is output frequency:

𝑌 = 𝐴 + 𝐵1 × 𝑋 + 𝐵2 × 𝑋
2
+ 𝐵3 × 𝑋

3
+ 𝐵4 × 𝑋

4
. (5)

In (5), the fitting coefficients are set as 𝐴 = 124367.68318,
𝐵1 = −196988.47832, 𝐵2 = 114417.76648, 𝐵3 = −28983.4746,
and 𝐵4 = 2710.54107. The result indicates that the coefficient
of determination or 𝑅-square is 0.9816. The value indicates
a good linearity of the proposed current sensor system in
response to the variation of the detected current.

Figure 12 presents the sensitivity of output frequency to
the input sensing current for the chattering neuron. A third

degree polynomial equation has been used to determine
the linearity of this particular model, where the fitting
coefficients are 𝐴 = −12200.61974, 𝐵1 = 14552.11481, 𝐵2 =
−5782.18955, and𝐵3= 766.42379, respectively.The coefficient
of determination (𝑅-square) has been calculated at 0.9989,
indicating that the chattering neuron model exhibits the best
linearity of the four models in this context while having the
smallest ranges in both input sensing current and output
frequency.

In Figure 13, the response of the neostriatal spiny projec-
tion is observed for its sensitivity of output frequency with
increased amounts of input sensing currents. It shows good
linearity yielding 𝑅-square = 0.99184, when fourth degree
polynomial equation has been employed to check its linearity.
The fitting coefficients are 𝐴 = 217.16676, 𝐵1 = −0.66135,
𝐵2 = 6.31764 × 10

−4, 𝐵3 = −1.90972 × 10−7, and 𝐵4 =
1.85658 × 10

−11. Lastly, Figure 14 presents similar response
for the proposed modified regular spiking neuron where
the input sensing current ranges from 2 pA to 8000 pA and
the frequency of the output neural spikes fluctuates between
1.47Hz and 700Hz. Similar to the regular spiking model,
the fourth degree polynomial equation has been used to
find the coefficient of determination. Fitting coefficients of
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Figure 9: Neostriatal spiny spiking frequency spectrum for (a)
500 pA, (b) 1000 pA, and (c) 1500 pA.

𝐴 = 174.30377, 𝐵1 = −770.09961, 𝐵2 = 734.05325, 𝐵3 =
−263.0652, and𝐵4= 34.31211 have been usedwhich generated
a 𝑅-square value of 0.9665.

6. Conclusion

In this paper an ultralow current sensor system based on
a neuron model has been presented. Four neural spiking
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Figure 10: Modified regular spiking frequency spectrum for (a)
70 pA, (b) 100 pA, and (c) 300 pA.

features have been analyzed for their performances on low
current detection and system linearity. The lowest value
documented for the coefficient of determination is 0.9665.
The chattering neuron exhibits the best linearity with 𝑅-
square value of 0.9989, of the four models in this context,
while having the smallest ranges in both the input sensing
current and the output frequency. The proposed modified
regular spiking pattern can work with the least amount of
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Figure 11: Output frequency variation of regular spiking neuron
feature with input sensing current.
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Figure 12: Output frequency variation of chattering neuron feature
with input sensing current.
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Figure 13: Output frequency variation of neostriatal spiny projec-
tion spiking neuron feature with input sensing current.
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Figure 14: Output frequency variation of modified regular spiking
neuron feature with input sensing current.

sensing current and has the widest input sensing current
range of 2 pA to 8 nA.Depending on the requirement for high
linearity and enhanced dynamic range of the sensing current,
the proposed sensor system can best fit for different ultralow
current bioapplications.
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