22 research outputs found

    The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury

    Get PDF
    Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2

    Omics and multi-omics analysis for the early identification and improved outcome of patients with psoriatic arthritis

    Get PDF
    The definitive diagnosis and early treatment of many immune-mediated inflammatory diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis (PsA), which develops in ~30% of people with psoriasis, is a key example. This mixed-pattern IMID is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often can only be made by clinical experts or when an extensive progressive disease state is apparent. As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the early diagnosis of PsA and the initiation of effective management and treatment strategies. However, specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics, metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be developed to diagnose PsA. Importantly, the integration of these markers with high-throughput histology, imaging and standardized clinical assessment data provides an important opportunity to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic responses. In this review, we consider the technologies that are currently deployed in the EU IMI2 project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of combining multi-omics data to improve the outcome of PsA patients

    Verwendung hochauflösender Massenspektrometrie zur Suche neuer Lipid-Biomarker in biologischen Proben

    No full text
    Die Aufdeckung krankheitsbedingter Unterschiede und die Identifizierung neuer Biomarker sind essenziell fĂŒr Diagnose und Behandlung verschiedener Erkrankungen. Unterschiede zwischen Erkrankungen können u.a. durch Analyse des Lipidprofils aufgedeckt werden, da dieses eng mit dem PhĂ€notyp verknĂŒpft ist. Ein unvoreingenommenes Screening gewĂ€hrt einen umfassenderen Einblick in den metabolischen Zustand als eine gezielte Untersuchung weniger Analyten und kann neue Hypothesen generieren. Deshalb wurde im Rahmen dieser Arbeit eine Screening-Methode zur untargeted Untersuchung des Lipidoms in biologischen Proben entwickelt. Durch die Kombination aus Umkehrphasenchromatographie und hochauflösender Massenspektrometrie mit datenabhĂ€ngiger Aufnahme von MS/MS-Spektren konnten in Humanplasma 440 Lipide aus mehr als 15 Lipidklassen identifiziert werden. Die mehrstufige Identifizierung der Analyten, basierend auf der exakten Masse ±5 ppm, der Isotopenverteilung, der MS/MS-Fragmentierungsmuster in beiden Ionisationsmodi sowie der chromatographischen Auftrennung von Isomeren und Isobaren, erfolgte mit hoher SelektivitĂ€t. Mit der vorgestellten Methode können sowohl Lipidklassen als auch einzelne Lipide relativ zu den internen Standards quantifiziert werden. Der Probendurchsatz wurde erhöht, um den Einsatz der Methode im Rahmen grĂ¶ĂŸerer klinischer Studien zu ermöglichen und vorhandene Ressourcen effizient einzusetzen. Dabei wurden die Inkubationszeiten wĂ€hrend der FlĂŒssig-FlĂŒssig-Extraktion mit MTBE:Methanol deutlich reduziert und die Handhabung vereinfacht bei gleichbleibend hoher Wiederfindung. Der hohe Probendurchsatz wird weiter unterstĂŒtzt durch die kurze chromatographische Laufzeit von 17 min pro Ionisationsmodus. Die Auswertung der Ergebnisse ist der heikelste und zeitintensivste Schritt bei der Entwicklung und Anwendung von Screening-Methoden, deshalb wurde der Arbeitsablauf zur univariaten Analyse durch Entwicklung von R Skripten vereinfacht und beschleunigt. Die QualitĂ€t und Reproduzierbarkeit der Ergebnisse sind essenziell. Aus diesem Grund wurde die QualitĂ€t der entwickelten Methode, angelehnt an den strikten Vorgaben der FDA und EMA zur Validierung von quantitativen Methoden, sichergestellt, obwohl eine MethodenĂŒberprĂŒfung im Bereich von untargeted Methoden nicht verbreitet ist. Die Reproduzierbarkeit der relativen Lipidkonzentrationen konnte z.B. durch die Messung von Kontrollplasmaproben ĂŒber einen Zeitraum von 10 Monaten gezeigt werden. Außerdem wurde die LinearitĂ€t der VerdĂŒnnung von Plasmaproben bestĂ€tigt und eine Verschleppung in darauffolgende Proben ausgeschlossen. Die StabilitĂ€t der Proben muss in jeder Messphase inklusive der PrĂ€analytik durch geeignete Untersuchungen und Maßnahmen sichergestellt werden. Anhand einer Studie zur prĂ€analytischen StabilitĂ€t humaner Blutproben konnte ein Protokoll zur Probennahme und -vorbereitung fĂŒr weitere klinische Studien erarbeitet werden. Die StabilitĂ€t des Lipidoms in Vollblut und Plasma konnte durch den Einsatz von Natriumfluorid/Citrat als Antikoagulans verbessert werden. Auch die StabilitĂ€t der Proben wĂ€hrend der Lipidextraktion und Messung konnte gezeigt werden. Es wurden 16 verschiedene Probenarten analysiert, darunter Plasmaproben, verschiedene Mausgewebe und Zellpellets. Mit der entwickelten Methode wurden die Unterschiede im Lipidprofil im Plasma und Gewebe von MĂ€usen mit einer akuten EntzĂŒndung durch LPS bzw. Zymosan-Injektion aufgedeckt. Dabei wurden die Ether-Phosphatidylcholine als potenzielle EntzĂŒndungsmarker identifiziert. Die entwickelte Methode wurde außerdem erfolgreich im Rahmen anderer Arbeiten fĂŒr die Untersuchung verschiedener Erkrankungen angewendet. In der vorliegenden Arbeit wird demnach eine schnelle, reproduzierbare und vor allem selektive LC-MS-Screening-Methode vorgestellt, die VerĂ€nderungen des Lipidstoffwechsels aufdecken und potenzielle Biomarker identifizieren kann

    Metabolic Profiling in Rheumatoid Arthritis, Psoriatic Arthritis, and Psoriasis: Elucidating Pathogenesis, Improving Diagnosis, and Monitoring Disease Activity

    No full text
    Immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and psoriasis (Ps), represent autoinflammatory and autoimmune disorders, as well as conditions that have an overlap of both categories. Understanding the underlying pathogeneses, making diagnoses, and choosing individualized treatments remain challenging due to heterogeneous disease phenotypes and the lack of reliable biomarkers that drive the treatment choice. In this review, we provide an overview of the low-molecular-weight metabolites that might be employed as biomarkers for various applications, e.g., early diagnosis, disease activity monitoring, and treatment-response prediction, in RA, PsA, and Ps. The literature was evaluated, and putative biomarkers in different matrices were identified, categorized, and summarized. While some of these candidate biomarkers appeared to be disease-specific, others were shared across multiple IMIDs, indicating common underlying disease mechanisms. However, there is still a long way to go for their application in a routine clinical setting. We propose that studies integrating omics analyses of large patient cohorts from different IMIDs should be performed to further elucidate their pathomechanisms and treatment options. This could lead to the identification and validation of biomarkers that might be applied in the context of precision medicine to improve the clinical outcomes of these IMID patients

    Visually guided preprocessing of bioanalytical laboratory data using an interactive R notebook (pguIMP)

    No full text
    The evaluation of pharmacological data using machine learning requires high data quality. Therefore, data preprocessing, that is, cleaning analytical laboratory errors, replacing missing values or outliers, and transforming data adequately before actual data analysis, is crucial. Because current tools available for this purpose often require programming skills, preprocessing tools with graphical user interfaces that can be used interactively are needed. In collaboration between data scientists and experts in bioanalytical diagnostics, a graphical software package for data preprocessing called pguIMP is proposed, which contains a fixed sequence of preprocessing steps to enable reproducible interactive data preprocessing. As an R-based package, it also allows direct integration into this data science environment without requiring any programming knowledge. The implementation of contemporary data processing methods, including machine-learning-based imputation techniques, ensures the generation of corrected and cleaned bioanalytical data sets that preserve data structures such as clusters better than is possible with classical methods. This was evaluated on bioanalytical data sets from lipidomics and drug research using k-nearest-neighbors-based imputation followed by k-means clustering and density-based spatial clustering of applications with noise. The R package provides a Shiny-based web interface designed to be easy to use for non–data analysis experts. It is demonstrated that the spectrum of methods provided is suitable as a standard pipeline for preprocessing bioanalytical data in biomedical research domains. The R package pguIMP is freely available at the comprehensive R archive network (https://cran.r-project.org/web/packages/pguIMP/index.html)

    Tumors provoke inflammation and perineural microlesions at adjacent peripheral nerves

    No full text
    Cancer-induced pain occurs frequently in patients when tumors or their metastases grow in the proximity of nerves. Although this cancer-induced pain states poses an important therapeutical problem, the underlying pathomechanisms are not understood. Here, we implanted adenocarcinoma, fibrosarcoma and melanoma tumor cells in proximity of the sciatic nerve. All three tumor types caused mechanical hypersensitivity, thermal hyposensitivity and neuronal damage. Surprisingly the onset of the hypersensitivity was independent of physical contact of the nerve with the tumors and did not depend on infiltration of cancer cells in the sciatic nerve. However, macrophages and dendritic cells appeared on the outside of the sciatic nerves with the onset of the hypersensitivity. At the same time point downregulation of perineural tight junction proteins was observed, which was later followed by the appearance of microlesions. Fitting to the changes in the epi-/perineurium, a dramatic decrease of triglycerides and acylcarnitines in the sciatic nerves as well as an altered localization and appearance of epineural adipocytes was seen. In summary, the data show an inflammation at the sciatic nerves as well as an increased perineural and epineural permeability. Thus, interventions aiming to suppress inflammatory processes at the sciatic nerve or preserving peri- and epineural integrity may present new approaches for the treatment of tumor-induced pain

    Phosphatidylethanolamine Deficiency and Triglyceride Overload in Perilesional Cortex Contribute to Non-Goal-Directed Hyperactivity after Traumatic Brain Injury in Mice

    No full text
    Traumatic brain injury (TBI) is often complicated by long-lasting disabilities, including headache, fatigue, insomnia, hyperactivity, and cognitive deficits. In a previous study in mice, we showed that persistent non-goal-directed hyperactivity is a characteristic post-TBI behavior that was associated with low levels of endocannabinoids in the perilesional cortex. We now analyzed lipidome patterns in the brain and plasma in TBI versus sham mice in association with key behavioral parameters and endocannabinoids. Lipidome profiles in the plasma and subcortical ipsilateral and contralateral brain were astonishingly equal in sham and TBI mice, but the ipsilateral perilesional cortex revealed a strong increase in neutral lipids represented by 30 species of triacylglycerols (TGs) of different chain lengths and saturation. The accumulation of TG was localized predominantly to perilesional border cells as revealed by Oil Red O staining. In addition, hexosylceramides (HexCer) and phosphatidylethanolamines (PE and ether-linked PE-O) were reduced. They are precursors of gangliosides and endocannabinoids, respectively. High TG, low HexCer, and low PE/PE-O showed a linear association with non-goal-directed nighttime hyperactivity but not with the loss of avoidance memory. The analyses suggest that TG overload and HexCer and PE deficiencies contributed to behavioral dimensions of post-TBI psychopathology

    The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury

    No full text
    Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2

    Phosphatidylethanolamine deficiency and triglyceride overload in perilesional cortex contribute to non-goal-directed hyperactivity after traumaticm brain injury in ice

    No full text
    Traumatic brain injury (TBI) is often complicated by long-lasting disabilities, including headache, fatigue, insomnia, hyperactivity, and cognitive deficits. In a previous study in mice, we showed that persistent non-goal-directed hyperactivity is a characteristic post-TBI behavior that was associated with low levels of endocannabinoids in the perilesional cortex. We now analyzed lipidome patterns in the brain and plasma in TBI versus sham mice in association with key behavioral parameters and endocannabinoids. Lipidome profiles in the plasma and subcortical ipsilateral and contralateral brain were astonishingly equal in sham and TBI mice, but the ipsilateral perilesional cortex revealed a strong increase in neutral lipids represented by 30 species of triacylglycerols (TGs) of different chain lengths and saturation. The accumulation of TG was localized predominantly to perilesional border cells as revealed by Oil Red O staining. In addition, hexosylceramides (HexCer) and phosphatidylethanolamines (PE and ether-linked PE-O) were reduced. They are precursors of gangliosides and endocannabinoids, respectively. High TG, low HexCer, and low PE/PE-O showed a linear association with non-goal-directed nighttime hyperactivity but not with the loss of avoidance memory. The analyses suggest that TG overload and HexCer and PE deficiencies contributed to behavioral dimensions of post-TBI psychopathology

    Increased Fat Taste Preference in Progranulin-Deficient Mice

    No full text
    Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn−/−) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn−/−) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn−/− mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn−/− mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition
    corecore