5,158 research outputs found

    Perturbative Expansion in the Galilean Invariant Spin One-Half Chern-Simons Field Theory

    Get PDF
    A Galilean Chern-Simons field theory is formulated for the case of two interacting spin-1/2 fields of distinct masses M and M'. A method for the construction of states containing N particles of mass M and N' particles of mass M' is given which is subsequently used to display equivalence to the spin-1/2 Aharonov-Bohm effect in the N = N' =1 sector of the model. The latter is then studied in perturbation theory to determine whether there are divergences in the fourth order (one loop) diagram. It is found that the contribution of that order is finite (and vanishing) for the case of parallel spin projections while the antiparallel case displays divergences which are known to characterize the spin zero case in field theory as well as in quantum mechanics.Comment: 14 pages LaTeX, including 2 figures using eps

    On the Classification of UGC1382 as a Giant Low Surface Brightness Galaxy

    Get PDF
    We provide evidence that UGC1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy which rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ~38 kpc and an extrapolated central surface brightness of ~26 mag/arcsec^2. Both components have a combined stellar mass of ~8x10^10 M_sun, and are embedded in a massive (10^10 M_sun) low-density (<3 M_sun/pc^2) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2x10^12 M_sun. Although possibly part of a small group, its low density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC1382 has UV-optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion time scale of ~10^11 yr suggests that UGC1382 may be a very long term resident of the green valley. We find that the formation and evolution of the LSB disk is best explained by the accretion of gas-rich LSB dwarf galaxies.Comment: 17 pages, 16 figures, 4 tables; accepted to the Astrophysical Journa

    Operator Ordering Problem of the Nonrelativistic Chern-Simons Theory

    Full text link
    The operator ordering problem due to the quantization or regularization ambiguity in the Chern-Simons theory exists. However, we show that this can be avoided if we require Galilei covariance of the nonrelativistic Abelian Chern-Simons theory even at the quantum level for the extended sources. The covariance can be recovered only by choosing some particular operator orderings for the generators of the Galilei group depending on the quantization ambiguities of the gaugemattergauge-matter commutation relation. We show that the desired ordering for the unusual prescription is not the same as the well-known normal ordering but still satisfies all the necessary conditions. Furthermore, we show that the equations of motion can be expressed in a similar form regardless of the regularization ambiguity. This suggests that the different regularization prescriptions do not change the physics. On the other hand, for the case of point sources the regularization prescription is uniquely determined, and only the orderings, which are equivalent to the usual one, are allowed.Comment: 18 page

    Electron-positron pair production in the Aharonov-Bohm potential

    Full text link
    In the framework of QED we evaluate the cross section for electron-positron pair production by a single photon in the presence of the external Aharonov-Bohm potential in first order of perturbation theory. We analyse energy, angular and polarization distributions at different energy regimes: near the threshold and at high photon energies.Comment: LaTeX file, 13 page

    Spectroscopic Analysis of H I Absorption Line Systems in 40 HIRES Quasars

    Get PDF
    We list and analyze H I absorption lines at redshifts 2 < z < 4 with column density (12 < log(N_HI) < 19) in 40 high-resolutional (FWHM = 8.0 km/s) quasar spectra obtained with the Keck+HIRES. We de-blend and fit all H I lines within 1,000 km/s of 86 strong H I lines whose column densities are log(N_HI/[cm^-2]) > 15. Unlike most prior studies, we use not only Lya but also all visible higher Lyman series lines to improve the fitting accuracy. This reveals components near to higher column density systems that can not be seen in Lya. We list the Voigt profile fits to the 1339 H I components that we found. We examined physical properties of H I lines after separating them into several sub-samples according to their velocity separation from the quasars, their redshift, column density and the S/N ratio of the spectrum. We found two interesting trends for lines with 12 < log(N_HI) < 15 which are within 200-1000 km/s of systems with log(N_HI) > 15. First, their column density distribution becomes steeper, meaning relatively fewer high column density lines, at z < 2.9. Second, their column density distribution also becomes steeper and their line width becomes broader by about 2-3 km/s when they are within 5,000 km/s of their quasar.Comment: 32 pages, 14 figures, accepted for publication in the Astronomical Journal. A complete version with all tables and figures is available at http://www.astro.psu.edu/users/misawa/pub/Paper/40hires.ps.g
    corecore