2,136 research outputs found

    Tractable Simulation of Error Correction with Honest Approximations to Realistic Fault Models

    Full text link
    In previous work, we proposed a method for leveraging efficient classical simulation algorithms to aid in the analysis of large-scale fault tolerant circuits implemented on hypothetical quantum information processors. Here, we extend those results by numerically studying the efficacy of this proposal as a tool for understanding the performance of an error-correction gadget implemented with fault models derived from physical simulations. Our approach is to approximate the arbitrary error maps that arise from realistic physical models with errors that are amenable to a particular classical simulation algorithm in an "honest" way; that is, such that we do not underestimate the faults introduced by our physical models. In all cases, our approximations provide an "honest representation" of the performance of the circuit composed of the original errors. This numerical evidence supports the use of our method as a way to understand the feasibility of an implementation of quantum information processing given a characterization of the underlying physical processes in experimentally accessible examples.Comment: 34 pages, 9 tables, 4 figure

    Medication Adherence Prediction Through Online Social Forums: A Case Study of Fibromyalgia

    Get PDF
    Background: Medication nonadherence can compound into severe medical problems for patients. Identifying patients who are likely to become nonadherent may help reduce these problems. Data-driven machine learning models can predict medication adherence by using selected indicators from patients’ past health records. Sources of data for these models traditionally fall under two main categories: (1) proprietary data from insurance claims, pharmacy prescriptions, or electronic medical records and (2) survey data collected from representative groups of patients. Models developed using these data sources often are limited because they are proprietary, subject to high cost, have limited scalability, or lack timely accessibility. These limitations suggest that social health forums might be an alternate source of data for adherence prediction. Indeed, these data are accessible, affordable, timely, and available at scale. However, they can be inaccurate. Objective: This paper proposes a medication adherence machine learning model for fibromyalgia therapies that can mitigate the inaccuracy of social health forum data. Methods: Transfer learning is a machine learning technique that allows knowledge acquired from one dataset to be transferred to another dataset. In this study, predictive adherence models for the target disease were first developed by using accurate but limited survey data. These models were then used to predict medication adherence from health social forum data. Random forest, an ensemble machine learning technique, was used to develop the predictive models. This transfer learning methodology is demonstrated in this study by examining data from the Medical Expenditure Panel Survey and the PatientsLikeMe social health forum. Results: When the models are carefully designed, less than a 5% difference in accuracy is observed between the Medical Expenditure Panel Survey and the PatientsLikeMe medication adherence predictions for fibromyalgia treatments. This design must take into consideration the mapping between the predictors and the outcomes in the two datasets. Conclusions: This study exemplifies the potential and limitations of transfer learning in medication adherence–predictive models based on survey data and social health forum data. The proposed approach can make timely medication adherence monitoring cost-effective and widely accessible. Additional investigation is needed to improve the robustness of the approach and extend its applicability to other therapies and other sources of data. [JMIR Med Inform 2019;7(2):e12561

    Morphogenesis in space offers challenges and opportunities for soft matter and biophysics

    Get PDF
    Abstract The effects of microgravity on soft matter morphogenesis have been documented in countless experiments, but physical understanding is still lacking in many cases. Here we review how gravity affects shape emergence and pattern formation for both inert matter and living systems of different biological complexities. We highlight the importance of building physical models for understanding the experimental results available. Answering these fundamental questions will not only solve basic scientific problems, but will also enable several industrial applications relevant to space exploration

    The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas

    Get PDF
    This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism

    Kinetics of Fast Changing Intramolecular Distance Distributions Obtained by Combined Analysis of FRET Efficiency Kinetics and Time-Resolved FRET Equilibrium Measurements

    Get PDF
    AbstractDetailed studies of the mechanisms of macromolecular conformational transitions such as protein folding are enhanced by analysis of changes of distributions for intramolecular distances during the transitions. Time-resolved Förster resonance energy transfer (FRET) measurements yield such data, but the more readily available kinetics of mean FRET efficiency changes cannot be analyzed in terms of changes in distances because of the sixth-power dependence on the mean distance. To enhance the information obtained from mean FRET efficiency kinetics, we combined the analyses of FRET efficiency kinetics and equilibrium trFRET experiments. The joint analysis enabled determination of transient distance distributions along the folding reaction both in cases where a two-state transition is valid and in some cases consisting of a three-state scenario. The procedure and its limits were tested by simulations. Experimental data obtained from stopped-flow measurements of the refolding of Escherichia coli adenylate kinase were analyzed. The distance distributions between three double-labeled mutants, in the collapsed transient state, were determined and compared to those obtained experimentally using the double-kinetics technique. The proposed method effectively provides information on distance distributions of kinetically accessed intermediates of fast conformational transitions induced by common relaxation methods

    Cholinergic modulation of epileptiform activity in the developing rat neocortex

    Get PDF
    The effects of carbachol on picrotoxin-induced epileptiform activity and membrane properties of neurons in the developing rat neocortex were examined in an in vitro slice preparation. Intracellular recordings were obtained in layer II–III neurons of slices prepared from rats 9–21 days of age. Epileptiform activity in 9- to 14-day-olds consisted of a sharply rising, sustained (10–30 s) membrane depolarization with superimposed action potentials. Bath application of carbachol (5–50 ÎŒM) raised the threshold for evoking epileptiform activity but, when such responses were evoked, their underlying depolarizations were increased in amplitude. Orthodromic stimulation in slices from 15- to 21-day-old animals evoked a prolonged epileptiform burst response that triggered an episode of spreading depression (SD). Carbachol reduced epileptiform responses and suppressed the occurrence of SD. It did not significantly affect the resting membrane potential or the height of the action potential but decreased the rheobase current needed to evoke an action potential and increased the input resistance. All effects of carbachol were antagonized by atropine (1 ÎŒM). These results indicate that carbachol has both pre- and postsynaptic effects in the developing neocortex and can significantly modulate neuronal excitability in the immature nervous system

    Connecting the real world to mathematical models in elementary schools in Luxemburg

    Get PDF
    In the Luxemburgish national curriculum for elementary schools (MENFP, 2011) experimentations and discoveries of mathematics concepts in courses are strongly recommended. Elementary school teachers should engage students in active mathematical modelling approaches, where they can develop processes and content skills through discoveries. Moreover, learned skills should be connected to real-world problems and situations to foster a better understanding of students’ living environments. Nevertheless, this teaching culture in mathematics is unusual in elementary schools and teachers tend to teach based on textbooks. Students mostly learn mathematics by imitation and repetition rather than through modelling mathematics with real-world problems and situations. Thus, to develop new methodologies in teaching mathematics and to meet the requirements of the national curriculum, we designed different technology-enhanced teaching and learning methods to engage students in experimental approaches within and outside classrooms. Moreover, we conducted three studies with digital and physical modelling, augmented reality, and a tutoring system in elementary school mathematics courses. Based on our collected data, we identified settings and tasks likely to support active mathematical modelling approaches

    Fostering process skills with the educational technology software MathemaTIC in elementary schools

    Get PDF
    This study reports the use of automated tutoring and scaffolding implemented in the module “arithmetic word problem” in the educational technology software MathemaTIC in grade 3 (age 8 to 10). We examined 246 students with access to MathemaTIC and receiving tutoring and scaffolding through a one-to-one learning setting with this technology. The control group (n=226) had access to the same learning tasks and worked with paper-and-pencil without MathemaTIC but with their teachers. Results showed that the experimental group finished with higher outcome scores than the control group. This paper will outline the study and attempts to explain these results
    • 

    corecore