114 research outputs found

    Advanced mineral carbonation: An approach to accelerate CO\u3csub\u3e2\u3c/sub\u3e sequestration using steel production wastes and integrated fluidized bed reactor

    Get PDF
    © Springer Nature Switzerland AG 2019. Industrial pollution is the major source of global warming through emissions of greenhouse gases (GHG’s) like CO2, CH4, and NO2, causing noticeable increasing in the world’s temperature. Mineral carbonation is a method of carbon capture and storage (CCS) through which CO2 is sequestered with advantage of permanent sequestration and no need for post-storage surveillance and monitoring through stabilizing the reactive mineral wastes released from metal industries. This paper applied a simple and an inexpensive hydration process as a pre-treatment step for the carbonation of Ladle Furnace (LF) slag, one of the steel production by-products in UAE, followed by direct gas-solid carbonation in a new designed integrated fluidized bed reactor (FBR). About (10–15)% by weight of produced steel, alkaline solid residues were generated, based on the characteristics of the manufacturing process. The integrated FBR was designed to control the flow rate up to 50 l/min with step accuracy of 0.1 l/min, and temperature up to 200 °C through a double jacket electrical heater. Operating pressure can be adjusted up to 6 bars. All parameters are monitored by SCADA system. A mixture gas of 10% CO2, balanced with air, was used to perform the carbonation process and evaluation the carbonation efficiency as well. A gas analyzer installed at the outlet of FBR was used to measure unreacted CO2 gas after leaving the reactor, and calculate the amount of CO2 captured accordingly. Results of analytical techniques like TGA and XRD emphasized the sequestration of CO2 and show a high efficient carbonation process

    The early career researcher's toolkit:translating tissue engineering, regenerative medicine and cell therapy products

    Get PDF
    Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization

    Utilization of Glycerol from Biodiesel Industry By-Product into Several Higher Value Product

    Get PDF
    Since the 1980s the energy demand has been increasing steadily, including diesel fuel. On the other hand the oil reserve in the world was increasingly limited because of being the product that could not be renewed. Therefore, effort was carried out to look for the alternative fuel that could be renewed and environment friendly. The alternative energy from new renewable energy is a solution to reduce the dependence of fossil energy. The renewable energy consists of the energy of water, wind, biomass or biofuels, solar energy, ocean energy, and geothermal energy. One of the biofuels is biodiesel. Biodiesel is diesel fuel which is made from vegetable oil by transesterification. The abundance of glycerol will result in declining sales value of glycerol as a by-product of the biodiesel plant. It should be anticipated to improve the usefulness of glycerol both in terms of quantity and its variants. The increasing usefulness of glycerol will result in the higher price of glycerol that will increase the profitability of biodiesel plants. Among the usefulness of glycerol investigated is as an ingredient in pharmaceutical products, polyether, emulsifiers, fabric softener, stabilizers, preservatives in bread, ice cream, cosmetic ingredients, a propellant binder, and others. This chapter explains the utilization of glycerol to produce triacetin as bioadditive and polyglycidyl nitrate (PGN) as a propellant binder. Triacetin is used to increase octane number of fuel and improve the biodiesel’s performance. Propellant binder consists of two kinds of non-energetic polymers and polymer energetic. The most energetic polymer is PGN. The focus of this chapter is to determine each step of reactions, operating conditions of process and the results of products

    Evaluation of residence time on nitrogen oxides removal in non-thermal plasma reactor

    Get PDF
    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore,between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode

    Considering Soil Potassium Pools with Dissimilar Plant Availability

    Get PDF
    Soil potassium (K) has traditionally been portrayed as residing in four functional pools: solution K, exchangeable K, interlayer (sometimes referred to as “fixed” or “nonexchangeable”) K, and structural K in primary minerals. However, this four-pool model and associated terminology have created confusion in understanding the dynamics of K supply to plants and the fate of K returned to the soil in fertilizers, residues, or waste products. This chapter presents an alternative framework to depict soil K pools. The framework distinguishes between micas and feldspars as K-bearing primary minerals, based on the presence of K in interlayer positions or three-dimensional framework structures, respectively; identifies a pool of K in neoformed secondary minerals that can include fertilizer reaction products; and replaces the “exchangeable” K pool with a pool defined as “surface-adsorbed” K, identifying where the K is located and the mechanism by which it is held rather than identification based on particular soil testing procedures. In this chapter, we discuss these K pools and their behavior in relation to plant K acquisition and soil K dynamics

    Hydrogenation of Edible Oils: a Model Involving Competitive Adsorption of Reactants

    No full text
    • 

    corecore