497 research outputs found

    Water Wettability Coupled with Film Growth on Realistic Cyclopentane Hydrate Surfaces

    Get PDF
    Although the wettability of hydrate surfaces and hydrate film growth are key to understanding hydrate agglomeration and pipeline plugging, a quantitative understanding of the coupled behavior between both phenomena is lacking. In situ measurements of wettability coupled with film growth were performed for cyclopentane hydrate surfaces in cyclopentane at atmospheric pressure and temperatures between 1.5-6.8 Β°C. Results were obtained as a function of annealing (conversion) time and subcooling. Hydrate surface wettability decreased as annealing time increased, while hydrate film growth rate was unaffected by annealing time at any subcooling. The results are interpreted as a manifestation of the hydrate surface porosity, which depends on annealing time and controls water spreading on the hydrate surface. The wettability generally decreased as the subcooling increased because higher subcooling yields rougher hydrate surfaces, making it harder for water to spread. However, this effect is balanced by hydrate growth rates, which increase with subcooling. Also affecting the results, surface heating from heat release (from exothermic crystallization) allows excess surface water to promote spreading. The hydrate film growth rate on water droplets increased with subcooling, as expected from a higher driving force. At any subcooling, the instantaneous hydrate growth rate decreased over time, likely from heat transfer limitations. A new phenomenon was observed, where the angle at the three-phase point increases from the initial contact angle upon hydrate film growth, named the crystallization angle. This is attributed to the water droplet trying to spread while the thin film is weak enough to be redirected. Once the hydrate film grows and forms a "wall" around the droplet, it cannot be moved, and further growth yields a crater on the droplet surface, attributed to water penetrating the hydrate surface pore structures. This fundamental behavior has many flow assurance implications since it affects the interactions between the agglomerating hydrate particles and water droplets

    Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells.

    Get PDF
    The cellular dynamics of the egress of lymphocytes from lymph nodes are poorly defined. Here we visualized the branched organization of lymph node cortical sinuses and found that after entry, some T cells were retained, whereas others returned to the parenchyma. T cells deficient in sphingosine 1-phosphate receptor type 1 probed the sinus surface but failed to enter the sinuses. In some sinuses, T cells became rounded and moved unidirectionally. T cells traveled from cortical sinuses into macrophage-rich sinus areas. Many T cells flowed from medullary sinuses into the subcapsular space. We propose a multistep model of lymph node egress in which cortical sinus probing is followed by entry dependent on sphingosine 1-phosphate receptor type 1, capture of cells in a sinus region with flow, and transport to medullary sinuses and the efferent lymph

    Surface morphology effects on clathrate hydrate wettability

    Get PDF
    Hypothesis: Clathrate hydrates preferentially form at interfaces; hence, wetting properties play an important role in their formation, growth, and agglomeration. Experimental evidence suggests that the hydrate preparation process can strongly affect contact angle measurements, leading to the different results reported in the literature. These differences hamper technological progress. We hypothesize that changes in hydrate surface morphologies are responsible for the wide variation of contact angles reported in the literature. // Experiments: Experimental testing of our hypothesis is problematic due to the preparation history of hydrates on their surface properties, and the difficulties in advanced surface characterization. Thus, we employ molecular dynamics simulations, which allow us to systematically change the interfacial features and the system composition. Implementing advanced algorithms, we quantify fundamental thermodynamic properties to validate our observations. // Findings: We achieve excellent agreement with experimental observations for both atomically smooth and rough hydrate surfaces. Our results suggest that contact line pinning forces, enhanced by surface heterogeneity, are accountable for altering water contact angles, thus explaining the differences among reported experimental data. Our analysis and molecular level insights help interpret adhesion force measurements and yield a better understanding of the agglomeration between hydrate particles, providing a microscopic tool for advancing flow assurance applications

    Emergency room surgical workload in an inner city UK teaching hospital

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.TA Mai-Phan was funded by Vietnam Overseas Scholarship Program (VOSP) of Vietnam's Ministry of Education and Training for his MSc studentship. HM Kocher is funded by the Department of Health (UK) Clinician Scientist Fellowship

    The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures.

    Full text link
    Extracellular DNA, or eDNA, is recognised as a critical biofilm component; however, it is not understood how it forms networked matrix structures. Here, we isolate eDNA from static-culture Pseudomonas aeruginosa biofilms using ionic liquids to preserve its biophysical signatures of fluid viscoelasticity and the temperature dependency of DNA transitions. We describe a loss of eDNA network structure as resulting from a change in nucleic acid conformation, and propose that its ability to form viscoelastic structures is key to its role in building biofilm matrices. Solid-state analysis of isolated eDNA, as a proxy for eDNA structure in biofilms, reveals non-canonical Hoogsteen base pairs, triads or tetrads involving thymine or uracil, and guanine, suggesting that the eDNA forms G-quadruplex structures. These are less abundant in chromosomal DNA and disappear when eDNA undergoes conformation transition. We verify the occurrence of G-quadruplex structures in the extracellular matrix of intact static and flow-cell biofilms of P. aeruginosa, as displayed by the matrix to G-quadruplex-specific antibody binding, and validate the loss of G-quadruplex structures in vivo to occur coincident with the disappearance of eDNA fibres. Given their stability, understanding how extracellular G-quadruplex structures form will elucidate how P. aeruginosa eDNA builds viscoelastic networks, which are a foundational biofilm property

    SARS-CoV-2 Variants, South Sudan, January-March 2021.

    Get PDF
    As the coronavirus pandemic continues, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence data are required to inform vaccine efforts. We provide SARS-CoV-2 sequence data from South Sudan and document the dominance of SARS-CoV-2 lineage B.1.525 (Eta variant) during the country's second wave of infection

    Seroprevalence of Toxoplasma gondii infection in arthritis patients in eastern China

    Get PDF
    Background: There is accumulating evidence for an increased susceptibility to infection in patients with arthritis. We sought to understand the epidemiology of Toxoplasma gondii infection in arthritis patients in eastern China, given the paucity of data on the magnitude of T. gondii infection in these patients. Methods: Seroprevalence of T. gondii infection was assessed by enzyme-linked immunosorbent assay using a crude antigen of the parasite in 820 arthritic patients, and an equal number of healthy controls, from Qingdao and Weihai cities, eastern China. Sociodemographic, clinical and lifestyle information on the study participants were also obtained. Results: The prevalence of anti-T. gondii IgG was significantly higher in arthritic patients (18.8%) compared with 12% in healthy controls (P < 0.001). Twelve patients with arthritis had anti-T. gondii IgM antibodies comparable with 10 control patients (1.5% vs 1.2%). Demographic factors did not significantly influence these seroprevalence frequencies. The highest T. gondii infection seropositivity rate was detected in patients with rheumatoid arthritis (24.8%), followed by reactive arthritis (23.8%), osteoarthritis (19%), infectious arthritis (18.4%) and gouty arthritis (14.8%). Seroprevalence rates of rheumatoid arthritis and reactive arthritis were significantly higher when compared with controls (P < 0.001 and P = 0.002, respectively). A significant association was detected between T. gondii infection and cats being present in the home in arthritic patients (odds ratio [OR], 1.68; 95% confidence interval [CI]: 1.24 – 2.28; P = 0.001). Conclusions: These findings are consistent with and extend previous results, providing further evidence to support a link between contact with cats and an increased risk of T. gondii infection. Our study is also the first to confirm an association between T. gondii infection and arthritis patients in China. Implications for better prevention and control of T. gondii infection in arthritis patients are discussed. Trial registration: This is an epidemiological survey, therefore trial registration was not required

    An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    Get PDF
    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA,DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both activesites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore