6,399 research outputs found

    Surface Modification of TiO2 Nanoparticles with Phenyltrimethoxysilane in Dye-sensitized Solar Cells

    Get PDF
    Phenyltrimethoxysilane (PTMS) was anchored onto the sensitized TiO2 nanoparticles. This insulating molecular layer effectively inhibited the charge recombination at the interface of TiO2/electrolyte in the dye sensitized solar cells (DSCs) without sacrificing the dye-loading capacity of the nanocrystalline TiO2. DSCs using PTMS-modified TiO2 exhibited a short-circuit current (J(SC)) of 15.9 mA/cm(2), an open-circuit voltage (V-OC) of 789 mV, and a fill factor (FE) of 68.2%, yielding an overall conversion efficiency (eta) of 8.55% under 100 mW/cm(2) illumination. The resulting cell efficiency was improved by similar to 10% as compared with the reference cell.X1133Ysciescopu

    The contribution of staff call light response time to fall and injurious fall rates: an exploratory study in four US hospitals using archived hospital data

    Get PDF
    Abstract Background Fall prevention programs for hospitalized patients have had limited success, and the effect of programs on decreasing total falls and fall-related injuries is still inconclusive. This exploratory multi-hospital study examined the unique contribution of call light response time to predicting total fall rates and injurious fall rates in inpatient acute care settings. The conceptual model was based on Donabedian's framework of structure, process, and health-care outcomes. The covariates included the hospital, unit type, total nursing hours per patient-day (HPPDs), percentage of the total nursing HPPDs supplied by registered nurses, percentage of patients aged 65 years or older, average case mix index, percentage of patients with altered mental status, percentage of patients with hearing problems, and call light use rate per patient-day. Methods We analyzed data from 28 units from 4 Michigan hospitals, using archived data and chart reviews from January 2004 to May 2009. The patient care unit-month, defined as data aggregated by month for each patient care unit, was the unit of analysis (N = 1063). Hierarchical multiple regression analyses were used. Results Faster call light response time was associated with lower total fall and injurious fall rates. Units with a higher call light use rate had lower total fall and injurious fall rates. A higher percentage of productive nursing hours provided by registered nurses was associated with lower total fall and injurious fall rates. A higher percentage of patients with altered mental status was associated with a higher total fall rate but not a higher injurious fall rate. Units with a higher percentage of patients aged 65 years or older had lower injurious fall rates. Conclusions Faster call light response time appeared to contribute to lower total fall and injurious fall rates, after controlling for the covariates. For practical relevance, hospital and nursing executives should consider strategizing fall and injurious fall prevention efforts by aiming for a decrease in staff response time to call lights. Monitoring call light response time on a regular basis is recommended and could be incorporated into evidence-based practice guidelines for fall prevention.http://deepblue.lib.umich.edu/bitstream/2027.42/112579/1/12913_2011_Article_2004.pd

    Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms

    Full text link
    © 2017 Elsevier B.V. Osmotic membrane bioreactors (OsMBRs) are a recent breakthrough technology designed to treat wastewater. Nevertheless, their application in high-salinity wastewater treatment is not widespread because of the effects of saline conditions on microbial community activity. In response, this study developed an integrated sponge biocarrier-OsMBR system using highly salt-tolerant microorganisms for treating saline wastewater. Results showed that the sponge biocarrier-OsMBR obtained an average water flux of 2 L/m2 h during a 92-day operation when 1 M MgCl2 was used as the draw solution. The efficiency in removing dissolved organic compounds from the proposed system was more than 99%, and nutrient rejection was close to 100%, indicating excellent performance in simultaneous nitrification and denitrification processes in the biofilm layer on the carriers. Moreover, salt-tolerant microorganisms in the sponge biocarrier-OsMBR system worked efficiently in salt concentrations of 2.4%. A polytetrafluoroethylene MD membrane (pores = 0.45 μm) served to regenerate the diluted draw solution in the closed-loop system and produce high-quality water. The moving sponge biocarrier-OsMBR/MD hybrid system demonstrated its potential to treat salinity wastewater treatment, with 100% nutrient removal and 99.9% conductivity rejection

    Meta-analysis methods for combining multiple expression profiles: Comparisons, statistical characterization and an application guideline

    Get PDF
    Background: As high-throughput genomic technologies become accurate and affordable, an increasing number of data sets have been accumulated in the public domain and genomic information integration and meta-analysis have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple microarray studies with relevant biological hypotheses are combined in order to improve candidate marker detection. Many methods have been developed and applied in the literature, but their performance and properties have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice of a meta-analysis method given an application; the decision essentially requires both statistical and biological considerations.Results: We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles, and such methods can be categorized for different hypothesis setting purposes: (1) HSA: DE genes with non-zero effect sizes in all studies, (2) HSB: DE genes with non-zero effect sizes in one or more studies and (3) HSr: DE gene with non-zero effect in "majority"of studies. We then performed a comprehensive comparative analysis through six large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data structure, respectively.Conclusions: The aggregated results from the simulation study categorized the 12 methods into three hypothesis settings (HSA, HSB, and HSr). Evaluation in real data and results from MDS and entropy analyses provided an insightful and practical guideline to the choice of the most suitable method in a given application. All source files for simulation and real data are available on the author's publication website. © 2013 Chang et al.; licensee BioMed Central Ltd

    Patient safety in dentistry: development of a candidate 'never event' list for primary care

    Get PDF
    Introduction The 'never event' concept is often used in secondary care and refers to an agreed list of patient safety incidents that 'should not happen if the necessary preventative measures are in place'. Such an intervention may raise awareness of patient safety issues and inform team learning and system improvements in primary care dentistry. Objective To identify and develop a candidate never event list for primary care dentistry. Methods A literature review, eight workshops with dental practitioners and a modified Delphi with 'expert' groups were used to identify and agree candidate never events. Results Two-hundred and fifty dental practitioners suggested 507 never events, reduced to 27 distinct possibilities grouped across seven themes. Most frequently occurring themes were: 'checking medical history and prescribing' (119, 23.5%) and 'infection control and decontamination' (71, 14%). 'Experts' endorsed nine candidate never event statements with one graded as 'extreme risk' (failure to check past medical history) and four as 'high risk' (for example, extracting wrong tooth). Conclusion Consensus on a preliminary list of never events was developed. This is the first known attempt to develop this approach and an important step in determining its value to patient safety. Further work is necessary to develop the utility of this method

    Quantification and viability analyses of Pseudokirchneriella subcapitata algal cells using image-based cytometry

    Get PDF
    This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1×105 and 8×106 cells mL1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2=0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.FCT Strategic Project PEst- OE/EQB/LA0023/2013. The post-doctoral grant from FCT (SFRH/BPD/72816/2010)

    Experimental Measurement of the Berry Curvature from Anomalous Transport

    Full text link
    Geometrical properties of energy bands underlie fascinating phenomena in a wide-range of systems, including solid-state materials, ultracold gases and photonics. Most famously, local geometrical characteristics like the Berry curvature can be related to global topological invariants such as those classifying quantum Hall states or topological insulators. Regardless of the band topology, however, any non-zero Berry curvature can have important consequences, such as in the semi-classical evolution of a wave packet. Here, we experimentally demonstrate for the first time that wave packet dynamics can be used to directly map out the Berry curvature. To this end, we use optical pulses in two coupled fibre loops to study the discrete time-evolution of a wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads to an anomalous displacement of the wave packet under pumping. This is both the first direct observation of Berry curvature effects in an optical system, and, more generally, the proof-of-principle demonstration that semi-classical dynamics can serve as a high-resolution tool for mapping out geometrical properties

    A single-photon transistor using nano-scale surface plasmons

    Full text link
    It is well known that light quanta (photons) can interact with each other in nonlinear media, much like massive particles do, but in practice these interactions are usually very weak. Here we describe a novel approach to realize strong nonlinear interactions at the single-photon level. Our method makes use of recently demonstrated efficient coupling between individual optical emitters and tightly confined, propagating surface plasmon excitations on conducting nanowires. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using quantum optical techniques. As a novel application, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence or absence of a single incident photon in a ``gate'' field is sufficient to completely control the propagation of subsequent ``signal'' photons.Comment: 20 pages, 4 figure

    Barriers to women entering surgical careers: a global study into medical student perceptions

    Get PDF
    Background Barriers to female surgeons entering the field are well documented in Australia, the USA and the UK, but how generalizable these problems are to other regions remains unknown. Methods A cross-sectional survey was developed by the International Federation of Medical Students' Associations (IFMSA)'s Global Surgery Working Group assessing medical students' desire to pursue a surgical career at different stages of their medical degree. The questionnaire also included questions on students' perceptions of their education, resources and professional life. The survey was distributed via IFMSA mailing lists, conferences and social media. Univariate analysis was performed, and statistically significant exposures were added to a multivariate model. This model was then tested in male and female medical students, before a further subset analysis by country World Bank income strata. Results 639 medical students from 75 countries completed the survey. Mentorship [OR 3.42 (CI 2.29–5.12) p = 0.00], the acute element of the surgical specialties [OR 2.22 (CI 1.49–3.29) p = 0.00], academic competitiveness [OR 1.61 (CI 1.07–2.42) p = 0.02] and being from a high or upper-middle-income country (HIC and UMIC) [OR 1.56 (CI 1.021–2.369) p = 0.04] all increased likelihood to be considering a surgical career, whereas perceived access to postgraduate training [OR 0.63 (CI 0.417–0.943) p = 0.03], increased year of study [OR 0.68 (CI 0.57–0.81) p = 0.00] and perceived heavy workload [OR 0.47 (CI 0.31–0.73) p = 0.00] all decreased likelihood to consider a surgical career. Perceived quality of surgical teaching and quality of surgical services in country overall did not affect students' decision to pursue surgery. On subset analysis, perceived poor access to postgraduate training made women 60% less likely to consider a surgical career [OR 0.381 (CI 0.217–0.671) p = 0.00], whilst not showing an effect in the men [OR 1.13 (CI 0.61–2.12) p = 0.70. Concerns about high cost of training halve the likelihood of students from low and low-middle-income countries (LICs and LMICs) considering a surgical career [OR 0.45 (CI 0.25–0.82) p = 0.00] whilst not demonstrating a significant relationship in HIC or UMIC countries. Women from LICs and LMICs were 40% less likely to consider surgical careers than men, when controlling for other factors [OR 0.59 CI (0.342–1.01 p = 0.053]. Conclusion Perceived poor access to postgraduate training and heavy workload dissuade students worldwide from considering surgical careers. Postgraduate training in particular appears to be most significant for women and cost of training an additional factor in both women and men from LMICs and LICs. Mentorship remains an important and modifiable factor in influencing student's decision to pursue surgery. Quality of surgical education showed no effect on student decision-making
    corecore