40 research outputs found

    Rapid Reversal of Chondroitin Sulfate Proteoglycan Associated Staining in Subcompartments of Mouse Neostriatum during the Emergence of Behaviour

    Get PDF
    BACKGROUND: The neostriatum, the mouse homologue of the primate caudate/putamen, is the input nucleus for the basal ganglia, receiving both cortical and dopaminergic input to each of its sub-compartments, the striosomes and matrix. The coordinated activation of corticostriatal pathways is considered vital for motor and cognitive abilities, yet the mechanisms which underlie the generation of these circuits are unknown. The early and specific targeting of striatal subcompartments by both corticostriatal and nigrostriatal terminals suggests activity-independent mechanisms, such as axon guidance cues, may play a role in this process. Candidates include the chondroitin sulfate proteoglycan (CSPG) family of glycoproteins which have roles not only in axon guidance, but also in the maturation and stability of neural circuits where they are expressed in lattice-like perineuronal nets (PNNs). METHODOLOGY/PRINCIPAL FINDINGS: The expression of CSPG-associated structures and PNNs with respect to neostriatal subcompartments has been examined qualitatively and quantitatively using double-labelling for Wisteria floribunda agglutinin (WFA), and the mu-opioid receptor (muOR), a marker for striosomes, at six postnatal ages in mice. We find that at the earliest ages (postnatal day (P)4 and P10), WFA-positive clusters overlap preferentially with the striosome compartment. By P14, these clusters disappear. In contrast, PNNs were first seen at P10 and continued to increase in density and spread throughout the caudate/putamen with maturation. Remarkably, the PNNs overlap almost exclusively with the neostriatal matrix. CONCLUSIONS/SIGNIFICANCE: This is the first description of a reversal in the distribution of CSPG associated structures, as well as the emergence and maintenance of PNNs in specific subcompartments of the neostriatum. These results suggest diverse roles for CSPGs in the formation of functional corticostriatal and nigrostriatal connectivity within the striosome and matrix compartments of the developing caudate/putamen

    Neoadjuvant chemotherapy prior to preoperative chemoradiation or radiation in rectal cancer: should we be more cautious?

    Get PDF
    Neoadjuvant chemotherapy (NACT) is a term originally used to describe the administration of chemotherapy preoperatively before surgery. The original rationale for administering NACT or so-called induction chemotherapy to shrink or downstage a locally advanced tumour, and thereby facilitate more effective local treatment with surgery or radiotherapy, has been extended with the introduction of more effective combinations of chemotherapy to include reducing the risks of metastatic disease. It seems logical that survival could be lengthened, or organ preservation rates increased in resectable tumours by NACT. In rectal cancer NACT is being increasingly used in locally advanced and nonmetastatic unresectable tumours. Randomised studies in advanced colorectal cancer show high response rates to combination cytotoxic therapy. This evidence of efficacy coupled with the introduction of novel molecular targeted therapies (such as Bevacizumab and Cetuximab), and long waiting times for radiotherapy have rekindled an interest in delivering NACT in locally advanced rectal cancer. In contrast, this enthusiasm is currently waning in other sites such as head and neck and nasopharynx cancer where traditionally NACT has been used. So, is NACT in rectal cancer a real advance or just history repeating itself? In this review, we aimed to explore the advantages and disadvantages of the separate approaches of neoadjuvant, concurrent and consolidation chemotherapy in locally advanced rectal cancer, drawing on theoretical principles, preclinical studies and clinical experience both in rectal cancer and other disease sites. Neoadjuvant chemotherapy may improve outcome in terms of disease-free or overall survival in selected groups in some disease sites, but this strategy has not been shown to be associated with better outcomes than postoperative adjuvant chemotherapy. In particular, there is insufficient data in rectal cancer. The evidence for benefit is strongest when NACT is administered before surgical resection. In contrast, the data in favour of NACT before radiation or chemoradiation (CRT) is inconclusive, despite the suggestion that response to induction chemotherapy can predict response to subsequent radiotherapy. The observation that spectacular responses to chemotherapy before radical radiotherapy did not result in improved survival, was noted 25 years ago. However, multiple trials in head and neck cancer, nasopharyngeal cancer, non-small-cell lung cancer, small-cell lung cancer and cervical cancer do not support the routine use of NACT either as an alternative, or as additional benefit to CRT. The addition of NACT does not appear to enhance local control over concurrent CRT or radiotherapy alone. Neoadjuvant chemotherapy before CRT or radiation should be used with caution, and only in the context of clinical trials. The evidence base suggests that concurrent CRT with early positioning of radiotherapy appears the best option for patients with locally advanced rectal cancer and in all disease sites where radiation is the primary local therapy

    Characteristics of Acacia mangium shoot apical meristems in natural and in vitro conditions in relation to heteroblasty

    Get PDF
    PDF version of the authors can be published in January 2013International audienceMorphological and histocytological characteristics of Acacia mangium shoot apical meristems (SAMs) were assessed in natural and in vitro conditions in relation to heteroblasty. In the natural environment, SAMs with a mature-phyllode morphology were much bigger, contained more cells with larger vacuolated area, or vacuome, and lower nucleoplasmic ratios than those from the juvenile type (Juv). In these latter, nuclei appeared more voluminous, evenly and lightly stained, with clearly distinguishable nucleolei and less abundant chromocenters. In vitro, where reversions from mature to juvenile morphological traits do occur unpredictably, heteroblasty was less obvious in the SAM characteristics examined. In vitro SAMs corresponding to the juvenile and mature types showed similarities with outdoor Juv SAMs, but could be distinguished from these latter by a much larger vacuome that might be induced by the culture conditions. These findings encourage pursuing the investigations at the chromatin and nucleolus level in SAM zones where heteroblasty-related differences have been detected
    corecore