16,349 research outputs found

    Kinetic Vlasov Simulations of collisionless magnetic Reconnection

    Full text link
    A fully kinetic Vlasov simulation of the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge is presented. Good agreement is found with previous kinetic simulations using particle in cell (PIC) codes, confirming both the PIC and the Vlasov code. In the latter the complete distribution functions fkf_k (k=i,ek=i,e) are discretised on a numerical grid in phase space. In contrast to PIC simulations, the Vlasov code does not suffer from numerical noise and allows a more detailed investigation of the distribution functions. The role of the different contributions of Ohm's law are compared by calculating each of the terms from the moments of the fkf_k. The important role of the off--diagonal elements of the electron pressure tensor could be confirmed. The inductive electric field at the X--Line is found to be dominated by the non--gyrotropic electron pressure, while the bulk electron inertia is of minor importance. Detailed analysis of the electron distribution function within the diffusion region reveals the kinetic origin of the non--gyrotropic terms

    A comparison of optimal and noise-abatement trajectories of a tilt-rotor aircraft

    Get PDF
    The potential benefits of flight path control to optimize performance and/or reduce the noise of a tilt-rotor aircraft operating in the takeoff and landing phases of flight are investigated. A theoretical performance-acoustic model is developed and then mathematically flown to yield representative takeoff and landing profiles. Minimum-time and minimum-fuel trajectories are compared to proposed noise-abatement profiles to assess the reductions in annoyance possible through flight path control. Significant reductions are feasible if a nearly vertical-takeoff flight profile is flown near the landing site; however, the time expended and fuel consumed increase

    Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Get PDF
    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation

    Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    Get PDF
    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field

    Dual Behavior of Antiferromagnetic Uncompensated Spins in NiFe/IrMn Exchange Biased Bilayers

    Full text link
    We present a comprehensive study of the exchange bias effect in a model system. Through numerical analysis of the exchange bias and coercive fields as a function of the antiferromagnetic layer thickness we deduce the absolute value of the averaged anisotropy constant of the antiferromagnet. We show that the anisotropy of IrMn exhibits a finite size effect as a function of thickness. The interfacial spin disorder involved in the data analysis is further supported by the observation of the dual behavior of the interfacial uncompensated spins. Utilizing soft x-ray resonant magnetic reflectometry we have observed that the antiferromagnetic uncompensated spins are dominantly frozen with nearly no rotating spins due to the chemical intermixing, which correlates to the inferred mechanism for the exchange bias.Comment: 4 pages, 3 figure

    Complementary Sensory and Associative Microcircuitry in Primary Olfactory Cortex

    Get PDF
    The three-layered primary olfactory (piriform) cortex is the largest component of the olfactory cortex. Sensory and intracortical inputs converge on principal cells in the anterior piriform cortex (aPC).Wecharacterize organization principles of the sensory and intracortical microcircuitry of layer II and III principal cells in acute slices of rat aPC using laser-scanning photostimulation and fast two-photon population Ca²⁺ imaging. Layer II and III principal cells are set up on a superficial-to-deep vertical axis. We found that the position on this axis correlates with input resistance and bursting behavior. These parameters scale with distinct patterns of incorporation into sensory and associative microcircuits, resulting in a converse gradient of sensory and intracortical inputs. In layer II, sensory circuits dominate superficial cells, whereas incorporation in intracortical circuits increases with depth. Layer III pyramidal cells receive more intracortical inputs than layer II pyramidal cells, but with an asymmetric dorsal offset. This microcircuit organization results in a diverse hybrid feedforward/recurrent network of neurons integrating varying ratios of intracortical and sensory input depending on a cell’s position on the superficial-to-deep vertical axis. Since burstiness of spiking correlates with both the cell’s location on this axis and its incorporation in intracortical microcircuitry, the neuronal output mode may encode a given cell’s involvement in sensory versus associative processing

    Spacelab 3: Research in microgravity

    Get PDF
    The Spacelab 3 mission, which focused on research in microgravity, took place during the period April 29 through May 6, 1985. Spacelab 3 was the second flight of the National Aeronautics and Space Administration's modular Shuttle-borne research facility. An overview of the mission is presented. Preliminary scientific results from the mission were presented by investigators at a symposium held at Marshall Space Flight Center on December 4, 1985. This special issue is based on reports presented at that symposium

    Mott-Hubbard exciton in the optical conductivity of YTiO3 and SmTiO3

    Full text link
    In the Mott-Hubbard insulators YTiO3 and SmTiO3 we study optical excitations from the lower to the upper Hubbard band, d^1d^1 -> d^0d^2. The multi-peak structure observed in the optical conductivity reflects the multiplet structure of the upper Hubbard band in a multi-orbital system. Absorption bands at 2.55 and 4.15 eV in the ferromagnet YTiO3 correspond to final states with a triplet d^2 configuration, whereas a peak at 3.7 eV in the antiferromagnet SmTiO3 is attributed to a singlet d^2 final state. A strongly temperature-dependent peak at 1.95 eV in YTiO3 and 1.8 eV in SmTiO3 is interpreted in terms of a Hubbard exciton, i.e., a charge-neutral (quasi-)bound state of a hole in the lower Hubbard band and a double occupancy in the upper one. The binding to such a Hubbard exciton may arise both due to Coulomb attraction between nearest-neighbor sites and due to a lowering of the kinetic energy in a system with magnetic and/or orbital correlations. Furthermore, we observe anomalies of the spectral weight in the vicinity of the magnetic ordering transitions, both in YTiO3 and SmTiO3. In the G-type antiferromagnet SmTiO3, the sign of the change of the spectral weight at T_N depends on the polarization. This demonstrates that the temperature dependence of the spectral weight is not dominated by the spin-spin correlations, but rather reflects small changes of the orbital occupation.Comment: Strongly extended version; new data of SmTiO3 included; detailed discussion of temperature dependence include

    A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels

    Get PDF
    Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.)
    corecore