188 research outputs found

    Measuring business-level expectations and uncertainty: survey evidence and the COVID-19 pandemic

    Get PDF

    Key characteristics of carcinogens meet hallmarks for prevention-cutting the Gordian knot

    Get PDF
    The complexity of cancer requires a comprehensive approach to understand its diverse manifestations and underlying mechanisms. Initially outlined by Hanahan and Weinberg in 2000 and updated in 2010, the hallmarks of cancer provide a conceptual basis for understanding inherent variability in cancer biology. Recent expansions have further elucidated additional hallmarks, including phenotypic plasticity and senescent cells. The International Agency for Research on Cancer (IARC) has identified the key characteristics of carcinogens (KCCs) to evaluate their carcinogenic potential. We analyzed chemicals of concern for environmental exposure that interact with specific receptors to induce genomic instability, epigenetic alterations, immune suppression, and receptor-mediated effects, thereby contributing to chronic inflammation. Despite their varying degrees of carcinogenicity, these chemicals have similar KCC profiles. Our analysis highlights the pivotal role of receptor binding in activating most other KCCs, underscoring their significance in cancer initiation. Although KCCs are associated with early molecular or cellular events, they do not encompass processes directly linked to full cellular malignancy. Thus, there is a need to integrate clear endpoints that anchor KCCs to the acquisition of a complete malignant phenotype into chemical testing. From the perspective of toxicology and cancer research, an all-encompassing strategy that incorporates both existing and novel KCCs and cancer hallmarks is essential to enable the targeted identification of prevalent carcinogens and facilitate zone-specific prevention strategies. To achieve this goal, collaboration between the KCC and cancer hallmarks communities becomes essential

    Magnetic impurities in the two-band s±s_\pm-wave superconductors

    Full text link
    We investigate the effects of magnetic impurities in a superconducting state with s±s_\pm pairing symmetry. Within a two-band model, we find that the intra-band magnetic scattering serves as a pair breaker while the inter-band magnetic scattering preserves pairing and hardly affects transition temperature in the Born limit. We also show that the same physics can persist beyond the weak scattering region. Our results coincide with recent experimental measurements in iron-based superconductors and thus provides an indirect evidence of the possible s±s_\pm pairing symmetry in these materials.Comment: 5 pages,4 figure

    Toward Confined Carbyne with Tailored Properties

    Get PDF
    Confining carbyne to a space that allows for stability and controlled reactivity is a very appealing approach to have access to materials with tunable optical and electronic properties without rival. Here, we show how controlling the diameter of single-walled carbon nanotubes opens the possibility to grow a confined carbyne with a defined and tunable band gap. The metallicity of the tubes has a minimal influence on the formation of the carbyne, whereas the diameter plays a major role in the growth. It has been found that the properties of confined carbyne can be tailored independently from its length and how these are mostly determined by its interaction with the carbon nanotube. Molecular dynamics simulations have been performed to interpret these findings. Furthermore, the choice of a single-walled carbon nanotube host has been proven crucial even to synthesize an enriched carbyne with the smallest energy gap currently reported and with remarkable homogeneity
    corecore