26 research outputs found
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber and does not require any advanced post-processing of the fiber. Strain sensitivity of -0.23 pm/mu epsilon is achieved experimentally and numerical simulations reveal that for the present fiber the sensitivity can be increased to -4.46 pm/mu epsilon by optimizing the pump wavelength and power. (C) 2012 Optical Society of Americ
Degeneracy analysis for a super cell of a photonic crystal and its application to the creation of band gaps
A method is introduced to analyze the degeneracy properties of the band
structure of a photonic crystal making use of the super cells. The band
structure associated with a super cell of a photonic crystal has degeneracies
at the edge of the Brillouin zone if the photonic crystal has some kind of
point group symmetry. Both E-polarization and H-polarization cases have the
same degeneracies for a 2-dimensional (2D) photonic crystal. Two theorems are
given and proved. These degeneracies can be lifted to create photonic band gaps
by changing the transform matrix between the super cell and the smallest unit
cell. The existence of the photonic band gaps for many known 2D photonic
crystals is explained through the degeneracy analysis.Comment: 19 pages, revtex4, 14 figures, p
Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab
We present an ultra broadband thin-film infrared absorber made of saw-toothed
anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence
is supported in a wide range of frequencies, where the full absorption width at
half maximum is about 86%. Such property is retained well at a very wide range
of incident angles too. Light of shorter wavelengths are harvested at upper
parts of the sawteeth of smaller widths, while light of longer wavelengths are
trapped at lower parts of larger tooth widths. This phenomenon is explained by
the slowlight modes in anisotropic metamaterial waveguide. Our study can be
applied in the field of designing photovoltaic devices and thermal emitters.Comment: 12 pages, 4 picture