214 research outputs found

    Occurrence of normal and anomalous diffusion in polygonal billiard channels

    Full text link
    From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e. when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t log t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e. power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures, additional comments. Some higher quality figures available at http://www.fis.unam.mx/~dsander

    Refined Simulations of the Reaction Front for Diffusion-Limited Two-Species Annihilation in One Dimension

    Full text link
    Extensive simulations are performed of the diffusion-limited reaction A++B→0\to 0 in one dimension, with initially separated reagents. The reaction rate profile, and the probability distributions of the separation and midpoint of the nearest-neighbour pair of A and B particles, are all shown to exhibit dynamic scaling, independently of the presence of fluctuations in the initial state and of an exclusion principle in the model. The data is consistent with all lengthscales behaving as t1/4t^{1/4} as t→∞t\to\infty. Evidence of multiscaling, found by other authors, is discussed in the light of these findings.Comment: Resubmitted as TeX rather than Postscript file. RevTeX version 3.0, 10 pages with 16 Encapsulated Postscript figures (need epsf). University of Geneva preprint UGVA/DPT 1994/10-85

    The Reaction-Diffusion Front for A+B→∅A+B \to\emptyset in One Dimension

    Full text link
    We study theoretically and numerically the steady state diffusion controlled reaction A+B→∅A+B\rightarrow\emptyset, where currents JJ of AA and BB particles are applied at opposite boundaries. For a reaction rate λ\lambda, and equal diffusion constants DD, we find that when λJ−1/2D−1/2≪1\lambda J^{-1/2} D^{-1/2}\ll 1 the reaction front is well described by mean field theory. However, for λJ−1/2D−1/2≫1\lambda J^{-1/2} D^{-1/2}\gg 1, the front acquires a Gaussian profile - a result of noise induced wandering of the reaction front center. We make a theoretical prediction for this profile which is in good agreement with simulation. Finally, we investigate the intrinsic (non-wandering) front width and find results consistent with scaling and field theoretic predictions.Comment: 11 pages, revtex, 4 separate PostScript figure

    Static Pairwise Annihilation in Complex Networks

    Get PDF
    We study static annihilation on complex networks, in which pairs of connected particles annihilate at a constant rate during time. Through a mean-field formalism, we compute the temporal evolution of the distribution of surviving sites with an arbitrary number of connections. This general formalism, which is exact for disordered networks, is applied to Kronecker, Erd\"os-R\'enyi (i.e. Poisson) and scale-free networks. We compare our theoretical results with extensive numerical simulations obtaining excellent agreement. Although the mean-field approach applies in an exact way neither to ordered lattices nor to small-world networks, it qualitatively describes the annihilation dynamics in such structures. Our results indicate that the higher the connectivity of a given network element, the faster it annihilates. This fact has dramatic consequences in scale-free networks, for which, once the ``hubs'' have been annihilated, the network disintegrates and only isolated sites are left.Comment: 7 Figures, 10 page

    Transport Properties of the Diluted Lorentz Slab

    Full text link
    We study the behavior of a point particle incident from the left on a slab of a randomly diluted triangular array of circular scatterers. Various scattering properties, such as the reflection and transmission probabilities and the scattering time are studied as a function of thickness and dilution. We show that a diffusion model satisfactorily describes the mentioned scattering properties. We also show how some of these quantities can be evaluated exactly and their agreement with numerical experiments. Our results exhibit the dependence of these scattering data on the mean free path. This dependence again shows excellent agreement with the predictions of a Brownian motion model.Comment: 14 pages of text in LaTeX, 7 figures in Postscrip
    • …
    corecore