874 research outputs found

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    Backpropagation training in adaptive quantum networks

    Full text link
    We introduce a robust, error-tolerant adaptive training algorithm for generalized learning paradigms in high-dimensional superposed quantum networks, or \emph{adaptive quantum networks}. The formalized procedure applies standard backpropagation training across a coherent ensemble of discrete topological configurations of individual neural networks, each of which is formally merged into appropriate linear superposition within a predefined, decoherence-free subspace. Quantum parallelism facilitates simultaneous training and revision of the system within this coherent state space, resulting in accelerated convergence to a stable network attractor under consequent iteration of the implemented backpropagation algorithm. Parallel evolution of linear superposed networks incorporating backpropagation training provides quantitative, numerical indications for optimization of both single-neuron activation functions and optimal reconfiguration of whole-network quantum structure.Comment: Talk presented at "Quantum Structures - 2008", Gdansk, Polan

    Thermal effects on electron-phonon interaction in silicon nanostructures

    Full text link
    Raman spectra from silicon nanostructures, recorded using excitation laser power density of 1.0 kW/cm^2, is employed here to reveal the dominance of thermal effects at temperatures higher than the room temperature. Room temperature Raman spectrum shows only phonon confinement and Fano effects. Raman spectra recorded at higher temperatures show increase in FWHM and decrease in asymmetry ratio with respect to its room temperature counterpart. Experimental Raman scattering data are analyzed successfully using theoretical Raman line-shape generated by incorporating the temperature dependence of phonon dispersion relation. Experimental and theoretical temperature dependent Raman spectra are in good agreement. Although quantum confinement and Fano effects persists, heating effects start dominating at higher temperatures than room tempaerature.Comment: 9 Pages, 3 Figures and 1 Tabl

    `Iconoclastic', Categorical Quantum Gravity

    Full text link
    This is a two-part, `2-in-1' paper. In Part I, the introductory talk at `Glafka--2004: Iconoclastic Approaches to Quantum Gravity' international theoretical physics conference is presented in paper form (without references). In Part II, the more technical talk, originally titled ``Abstract Differential Geometric Excursion to Classical and Quantum Gravity'', is presented in paper form (with citations). The two parts are closely entwined, as Part I makes general motivating remarks for Part II.Comment: 34 pages, in paper form 2 talks given at ``Glafka--2004: Iconoclastic Approaches to Quantum Gravity'' international theoretical physics conference, Athens, Greece (summer 2004

    From abstract to impact in cardiovascular research: factors predicting publication and citation

    Get PDF
    Aims Through a 4-year follow-up of the abstracts submitted to the European Society of Cardiology Congress in 2006, we aimed at identifying factors predicting high-quality research, appraising the quality of the peer review and editorial processes, and thereby revealing potential ways to improve future research, peer review, and editorial work. Methods and results All abstracts submitted in 2006 were assessed for acceptance, presentation format, and average reviewer rating. Accepted and rejected studies were followed for 4 years. Multivariate regression analyses of a representative selection of 10% of all abstracts (n= 1002) were performed to identify factors predicting acceptance, subsequent publication, and citation. A total of 10 020 abstracts were submitted, 3104 (31%) were accepted for poster, and 701 (7%) for oral presentation. At Congress level, basic research, a patient number ≥ 100, and prospective study design were identified as independent predictors of acceptance. These factors differed from those predicting full-text publication, which included academic affiliation. The single parameter predicting frequent citation was study design with randomized controlled trials reaching the highest citation rates. The publication rate of accepted studies was 38%, whereas only 24% of rejected studies were published. Among published studies, those accepted at the Congress received higher citation rates than rejected ones. Conclusions Research of high quality was determined by study design and largely identified at Congress level through blinded peer review. The scientometric follow-up revealed a marked disparity between predictors of full-text publication and those predicting citation or acceptance at the Congres

    `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    Get PDF
    Based on the algebraico-categorical (:sheaf-theoretic and sheaf cohomological) conceptual and technical machinery of Abstract Differential Geometry, a new, genuinely background spacetime manifold independent, field quantization scenario for vacuum Einstein gravity and free Yang-Mills theories is introduced. The scheme is coined `third quantization' and, although it formally appears to follow a canonical route, it is fully covariant, because it is an expressly functorial `procedure'. Various current and future Quantum Gravity research issues are discussed under the light of 3rd-quantization. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly written that the Editor for this volume is Daniele Oriti, with CUP as publisher. I apologize for the mistake.

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular
    corecore