222 research outputs found

    Imaging mass spectrometry detects dynamic changes of phosphatidylcholine in rat hippocampal CA1 after transient global ischemia

    Get PDF
    AbstractBackground and purpose: The initial steps in the cascade leading to cell death are still unknown because of the limitations of the existing methodology, strategy, and modalities used. Methods: Imaging mass spectrometry (IMS) was used to measure dynamic molecular changes of phosphatidylcholine (PC) species in the rat hippocampus after transient global ischemia (TGI) for 6min. Fresh frozen sections were obtained after euthanizing the rats on Days 1, 2, 4, 7, 10, 14, and 21. Histopathology and IMS of adjacent sections compared morphological and molecular changes, respectively. Results: Histopathological changes were absent immediately after TGI (at Day 1, superacute phase). At Days 2–21 after TGI (from subacute to chronic phases), histopathology revealed neuronal death associated with gliosis, inflammation, and accumulation of activated microglia in CA1. IMS detected significant molecular changes after TGI in the same CA1 domain: increase of PC (diacyl-16:0/22:6) in the superacute phase and increase of PC (diacyl-16:0/18:1) in the subacute to chronic phases. Conclusions: Histopathology and IMS can provide comprehensive and complementary information on cell death mechanisms in the hippocampal CA1 after global ischemia. IMS provided novel data on molecular changes in phospholipids immediately after TGI. Increased level of PC (diacyl-16:0/22:6) in the pyramidal cell layer of hippocampal CA1 prior to the histopathological change may represent an early step in delayed neuronal death mechanisms

    Meta-analysis Reveals Genome-Wide Significance at 15q13 for Nonsyndromic Clefting of Both the Lip and the Palate, and Functional Analyses Implicate GREM1 As a Plausible Causative Gene

    Get PDF
    Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13×10−14 for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32–1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94–1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47–9.61, Pdiff<0.05). While we did not find lip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions.Clefts of the lip and palate are common birth defects, and require long-term multidisciplinary management. Their etiology involves genetic factors and environmental influences and/or a combination of both, however, these interactions are poorly defined. Moreover, although clefts of the lip may or may not involve the palate, the determinants predisposing to specific subphenotypes are largely unknown. Here we demonstrate that variations in the non-coding region near the GREM1 gene show a highly significant association with a particular phenotype in which cleft lip and cleft palate co-occ

    Semaphorin 6A Improves Functional Recovery in Conjunction with Motor Training after Cerebral Ischemia

    Get PDF
    Background: We have previously identified Semaphorin 6a (Sema6A) as an upregulated gene product in a gene expression screen in cortical ischemia [1]. Semaphorin 6a was regulated during the recovery phase following ischemia in the cortex. Semaphorin 6a is a member of the superfamily of semaphorins involved in axon guidance and other functions. We hypothesized that the upregulation indicates a crucial role of this molecule in post-stroke rewiring of the brain. Here we have tested this hypothesis by overexpressing semaphorin 6a in the cortex by microinjection of a modified AAV2-virus. A circumscribed cortical infarct was induced, and the recovery of rats monitored for up to 4 weeks using a well-established test battery (accelerated rotarod training paradigm, cylinder test, adhesive tape removal). We observed a significant improvement in post-ischemic recovery of animals injected with the semaphorin 6a virus versus animals treated with a control virus. We conclude that semaphorin 6a overexpressed in the cortex enhances recovery after cerebral ischemia

    Expression of Nestin by Neural Cells in the Adult Rat and Human Brain

    Get PDF
    Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs). Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. While significant attention has been paid to studying NPCs in the SVZ and SGZ in the adult brain, relatively little attention has been paid to determining whether nestin-expressing neural cells (NECs) exist outside of the SVZ and SGZ. We therefore stained sections immunocytochemically from the adult rat and human brain for NECs, observed four distinct classes of these cells, and present here the first comprehensive report on these cells. Class I cells are among the smallest neural cells in the brain and are widely distributed. Class II cells are located in the walls of the aqueduct and third ventricle. Class IV cells are found throughout the forebrain and typically reside immediately adjacent to a neuron. Class III cells are observed only in the basal forebrain and closely related areas such as the hippocampus and corpus striatum. Class III cells resemble neurons structurally and co-express markers associated exclusively with neurons. Cell proliferation experiments demonstrate that Class III cells are not recently born. Instead, these cells appear to be mature neurons in the adult brain that express nestin. Neurons that express nestin are not supposed to exist in the brain at any stage of development. That these unique neurons are found only in brain regions involved in higher order cognitive function suggests that they may be remodeling their cytoskeleton in supporting the neural plasticity required for these functions

    No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The involvement of xenotropic murine leukemia virus-related virus (XMRV) in prostate cancer (PC) and chronic fatigue syndrome (CFS) is disputed as its reported prevalence ranges from 0% to 25% in PC cases and from 0% to more than 80% in CFS cases. To evaluate the risk of XMRV infection during blood transfusion in Japan, we screened three populations--healthy donors (<it>n </it>= 500), patients with PC (<it>n </it>= 67), and patients with CFS (<it>n </it>= 100)--for antibodies against XMRV proteins in freshly collected blood samples. We also examined blood samples of viral antibody-positive patients with PC and all (both antibody-positive and antibody-negative) patients with CFS for XMRV DNA.</p> <p>Results</p> <p>Antibody screening by immunoblot analysis showed that a fraction of the cases (1.6-3.0%) possessed anti-Gag antibodies regardless of their gender or disease condition. Most of these antibodies were highly specific to XMRV Gag capsid protein, but none of the individuals in the three tested populations retained strong antibody responses to multiple XMRV proteins. In the viral antibody-positive PC patients, we occasionally detected XMRV genes in plasma and peripheral blood mononuclear cells but failed to isolate an infectious or full-length XMRV. Further, all CFS patients tested negative for XMRV DNA in peripheral blood mononuclear cells.</p> <p>Conclusion</p> <p>Our data show no solid evidence of XMRV infection in any of the three populations tested, implying that there is no association between the onset of PC or CFS and XMRV infection in Japan. However, the lack of adequate human specimens as a positive control in Ab screening and the limited sample size do not allow us to draw a firm conclusion.</p

    NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel

    Get PDF
    Paclitaxel (PTX) is one of the most effective anticancer agents. In clinical practice, however, high incidences of adverse reactions of the drug, for example, neurotoxicity, myelosuppression, and allergic reactions, have been reported. NK105, a micellar nanoparticle formulation, was developed to overcome these problems and to enhance the antitumour activity of PTX. Via the self-association process, PTX was incorporated into the inner core of the micelle system by physical entrapment through hydrophobic interactions between the drug and the well-designed block copolymers for PTX. NK105 was compared with free PTX with respect to their in vitro cytotoxicity, in vivo antitumour activity, pharmacokinetics, pharmacodynamics, and neurotoxicity. Consequently, the plasma area under the curve (AUC) values were approximately 90-fold higher for NK105 than for free PTX because the leakage of PTX from normal blood vessels was minimal and its capture by the reticuloendothelial system minimised. Thus, the tumour AUC value was 25-fold higher for NK105 than for free PTX. NK105 showed significantly potent antitumour activity on a human colorectal cancer cell line HT-29 xenograft as compared with PTX (P<0.001) because the enhanced accumulation of the drug in the tumour has occurred, probably followed by its effective and sustained release from micellar nanoparticles. Neurotoxicity was significantly weaker with NK105 than with free PTX. The neurotoxicity of PTX was attenuated by NK105, which was demonstrated by both histopathological (P<0.001) and physiological (P<0.05) methods for the first time. The present study suggests that NK105 warrants a clinical trial for patients with metastatic solid tumours

    The Potential Role of Metalloproteinases in Neurogenesis in the Gerbil Hippocampus Following Global Forebrain Ischemia

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. PRINCIPAL FINDINGS: We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. CONCLUSION: Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus

    Oct4-Induced Reprogramming Is Required for Adult Brain Neural Stem Cell Differentiation into Midbrain Dopaminergic Neurons

    Get PDF
    Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency

    Direct Stimulation of Adult Neural Stem/Progenitor Cells In Vitro and Neurogenesis In Vivo by Salvianolic Acid B

    Get PDF
    Background: Small molecules have been shown to modulate the neurogenesis processes. In search for new therapeutic drugs, the herbs used in traditional medicines for neurogenesis are promising candidates. Methodology and Principal Findings: We selected a total of 45 natural compounds from Traditional Chinese herbal medicines which are extensively used in China to treat stroke clinically, and tested their proliferation-inducing activities on neural stem/progenitor cells (NSPCs). The screening results showed that salvianolic acid B (Sal B) displayed marked effects on the induction of proliferation of NSPCs. We further demonstrated that Sal B promoted NSPCs proliferation in dose- and time-dependent manners. To explore the molecular mechanism, PI3K/Akt, MEK/ERK and Notch signaling pathways were investigated. Cell proliferation assay demonstrated that Ly294002 (PI3K/Akt inhibitor), but neither U0126 (ERK inhibitor) nor DAPT (Notch inhibitor) inhibited the Sal B-induced proliferation of cells. Western Blotting results showed that stimulation of NSPCs with Sal B enhanced the phosphorylation of Akt, and Ly294002 abolished this effect, confirming the role of Akt in Sal B mediated proliferation of NSPCs. Rats exposed to transient cerebral ischemia were treated for 4 weeks with Sal B from the 7th day after stroke. BrdU incorporation assay results showed that exposure Sal B could maintain the proliferation of NSPCs after cerebral ischemia. Morris water maze test showed that delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats

    Cholera Toxin Regulates a Signaling Pathway Critical for the Expansion of Neural Stem Cell Cultures from the Fetal and Adult Rodent Brains

    Get PDF
    Background: New mechanisms that regulate neural stem cell (NSC) expansion will contribute to improved assay systems and the emerging regenerative approach that targets endogenous stem cells. Expanding knowledge on the control of stem cell self renewal will also lead to new approaches for targeting the stem cell population of cancers. Methodology/Principal Findings: Here we show that Cholera toxin regulates two recently characterized NSC markers, the Tie2 receptor and the transcription factor Hes3, and promotes the expansion of NSCs in culture. Cholera toxin increases immunoreactivity for the Tie2 receptor and rapidly induces the nuclear localization of Hes3. This is followed by powerful cultured NSC expansion and induction of proliferation both in the presence and absence of mitogen. Conclusions/Significance: Our data suggest a new cell biological mechanism that regulates the self renewal and differentiation properties of stem cells, providing a new logic to manipulate NSCs in the context of regenerative disease and cancer
    corecore