5,738 research outputs found

    Analysis of penumbral eclipse data

    Get PDF
    Two days of data from the ATS-6 1976 eclipse season were analyzed to determine the effects of varying photoelectron flux on spacecraft potential. Particular emphasis was placed on the variation in potential as the satellite entered the earth's penumbra. Measurements from the AE-C satellite of the solar UV radiation were used to construct a model of atmospheric attenuation. This model was found to be consistent with direct measurements of the variations in photoelectron flux as Injun 5 passed into eclipse. Applying the model to the ATS-6 data gave the time dependency of the solar illumination/photoelectron flux as the satellite was eclipsed. This relationship, when combined with the ATS-6 measurements of satellite potential, revealed a nearly linear relation between the solar illumination/photoelectron flux and the logarithm of the satellite potential

    An overview of charging environments

    Get PDF
    A brief synopsis of the natural environments that play a role in spacecraft charging is presented. Environments that cause both surface and internal charging are discussed along with the mechanisms involved. The geosynchronous and low altitude regions of the Earth's magnetosphere/ionosphere are considered and simple descriptions of each environment presented. As material properties are critical to the charging process, definition of material properties important to charging, which can be affected by the environment, are also described. Several space experiments are proposed that would help fill the gaps in the knowledge of the performance of materials in a charging environment

    Magnification Ratio of the Fluctuating Light in Gravitational Lens 0957+561

    Full text link
    Radio observations establish the B/A magnification ratio of gravitational lens 0957+561 at about 0.75. Yet, for more than 15 years, the optical magnfication ratio has been between 0.9 and 1.12. The accepted explanation is microlensing of the optical source. However, this explanation is mildly discordant with (i) the relative constancy of the optical ratio, and (ii) recent data indicating possible non-achromaticity in the ratio. To study these issues, we develop a statistical formalism for separately measuring, in a unified manner, the magnification ratio of the fluctuating and constant parts of the light curve. Applying the formalism to the published data of Kundi\'c et al. (1997), we find that the magnification ratios of fluctuating parts in both the g and r colors agrees with the magnification ratio of the constant part in g-band, and tends to disagree with the r-band value. One explanation could be about 0.1 mag of consistently unsubtracted r light from the lensing galaxy G1, which seems unlikely. Another could be that 0957+561 is approaching a caustic in the microlensing pattern.Comment: 12 pages including 1 PostScript figur

    Design guidelines for assessing and controlling spacecraft charging effects

    Get PDF
    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined

    Walnut agroforestry (1996)

    Get PDF
    Agroforestry, or growing trees and other crops together on the same land, has been practiced for years in other countries to achieve more sustainable and productive use of limited land resources. In the U.S., forestry and agriculture historically have been considered mutually exclusive land use alternatives. But with clear management objectives, careful planning and skillful intensive management, combining crops and trees can provide advantages that outweigh any perceived disadvantages. Agroforestry is a potential alternative to conventional mechanical methods for soil erosion control. It also allows for gradual removal of highly erodible cropland from row-crop production.New 1/92, Reprinted 5/96/5

    Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    Get PDF
    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEUs calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEUs by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU's. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU’s was 72, yielding a total of 248 predicted SEU’s, very close to the 243 observed SEU’s. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU’s during the October 1989 solar particle events
    • …
    corecore