3,415 research outputs found

    Molecular basis of carbohydrate-deficient glycoprotein syndromes type I with normal phosphomannomutase activity

    Get PDF
    AbstractCarbohydrate deficient glycoprotein syndromes (CDGS) are inherited disorders in glycosylation. Isoelectric focusing of serum transferrin is used as a biochemical indicator of CDGS; however, this technique cannot diagnose the molecular defect. Even though phosphomannomutase (PMM) deficiency accounts for the great majority of known CDGS cases (CDGS type Ia), newly discovered cases have significantly different clinical presentations than the PMM-deficient patients. These differences arise from other defects affecting the biosynthesis of N-linked oligosaccharides in the endoplasmic reticulum and in the Golgi compartment. The most notable is the loss of phosphomannose isomerase (PMI) (CDGS type Ib). It causes severe hypoglycemia, protein-losing enteropathy, vomiting, diarrhea, and congenital hepatic fibrosis. In contrast to PMM-deficiency, there is no developmental delay nor neuropathy. Most symptoms in the PMI-deficient patients can be successfully treated with dietary mannose supplements. Another defect is the lack of glucosylation of the lipid-linked oligosaccharide precursor. The clinical features of this form of CDGS are milder, but similar to, PMM-deficient patients. Yeast genetic and biochemical techniques were critical in unraveling these disorders since many of the defective genes were known in yeast and corresponding mutants were available for complementation. Yeast strains carrying mutations in the homologous genes are likely to provide conclusive identification of the primary defects in novel CDGS types that affect the synthesis and transfer of precursor oligosaccharides

    Fermi surface induced lattice distortion in NbTe2_2

    Full text link
    The origin of the monoclinic distortion and domain formation in the quasi two-dimensional layer compound NbTe2_2 is investigated. Angle-resolved photoemission shows that the Fermi surface is pseudogapped over large portions of the Brillouin zone. Ab initio calculation of the electron and phonon bandstructure as well as the static RPA susceptibility lead us to conclude that Fermi surface nesting and electron-phonon coupling play a key role in the lowering of the crystal symmetry and in the formation of the charge density wave phase

    Exciton condensation driving the periodic lattice distortion of 1T-TiSe2

    Get PDF
    We address the lattice instability of 1T-TiSe2 in the framework of the exciton condensate phase. We show that, at low temperature, condensed excitons influence the lattice through electron-phonon interaction. It is found that at zero temperature, in the exciton condensate phase of 1T-TiSe2, this exciton condensate exerts a force on the lattice generating ionic displacements comparable in amplitude to what is measured in experiment. This is thus the first quantitative estimation of the amplitude of the periodic lattice distortion observed in 1T-TiSe2 as a consequence of the exciton condensate phase.Comment: 5 pages, 3 figures and 1 tabl

    Hot Spots on the Fermi Surface of Bi2212: Stripes versus Superstructure

    Full text link
    In a recent paper Saini et al. have reported evidence for a pseudogap around (pi,0) at room temperature in the optimally doped superconductor Bi2212. This result is in contradiction with previous ARPES measurements. Furthermore they observed at certain points on the Fermi surface hot spots of high spectral intensity which they relate to the existence of stripes in the CuO planes. They also claim to have identified a new electronic band along Gamma-M1 whose one dimensional character provides further evidence for stripes. We demonstrate in this Comment that all the measured features can be simply understood by correctly considering the superstructure (umklapp) and shadow bands which occur in Bi2212.Comment: 1 page, revtex, 1 encapsulated postscript figure (color

    Spontaneous exciton condensation in 1T-TiSe2: a BCS-like approach

    Full text link
    Recently strong evidence has been found in favor of a BCS-like condensation of excitons in 1\textit{T}-TiSe2_2. Theoretical photoemission intensity maps have been generated by the spectral function calculated within the excitonic condensate phase model and set against experimental angle-resolved photoemission spectroscopy data. Here, the calculations in the framework of this model are presented in detail. They represent an extension of the original excitonic insulator phase model of J\'erome \textit{et al.} [Phys. Rev. {\bf 158}, 462 (1967)] to three dimensional and anisotropic band dispersions. A detailed analysis of its properties and further comparison with experiment are also discussedComment: Submitted to PRB, 11 pages, 7 figure

    Hole Pockets in the Doped 2D Hubbard Model

    Full text link
    The electronic momentum distribution n(k){\rm n({\bf k})} of the two dimensional Hubbard model is studied for different values of the coupling U/t{\rm U/t}, electronic density n{\rm \langle n \rangle}, and temperature, using quantum Monte Carlo techniques. A detailed analysis of the data on 8×88\times 8 clusters shows that features consistent with hole pockets at momenta k=(±π2,±π2){\rm {\bf k}=(\pm {\pi\over{2}},\pm {\pi\over{2}})} appear as the system is doped away from half-filling. Our results are consistent with recent experimental data for the cuprates discussed by Aebi et al. (Phys. Rev. Lett. {\bf 72}, 2757 (1994)). In the range of couplings studied, the depth of the pockets is maximum at n0.9{\rm \langle n \rangle \approx 0.9}, and it increases with decreasing temperature. The apparent absence of hole pockets in previous numerical studies of this model is explained.Comment: 11 pages, 4 postscript figures appended, RevTeX (version 3.0
    corecore