5 research outputs found

    Investigation of Outbreaks of Salmonella enterica Serovar Typhimurium and Its Monophasic Variants Using Whole-Genome Sequencing, Denmark

    Get PDF
    Whole-genome sequencing is rapidly replacing current molecular typing methods for surveillance purposes. Our study evaluates core-genome single-nucleotide polymorphism analysis for outbreak detection and linking of sources of Salmonella enterica serovar Typhimurium and its monophasic variants during a 7-month surveillance period in Denmark. We reanalyzed and defined 8 previously characterized outbreaks from the phylogenetic relatedness of the isolates, epidemiologic data, and food traceback investigations. All outbreaks were identified, and we were able to exclude unrelated and include additional related human cases. We were furthermore able to link possible food and veterinary sources to the outbreaks. Isolates clustered according to sequence types (STs) 19, 34, and 36. Our study shows that core-genome single-nucleotide polymorphism analysis is suitable for surveillance and outbreak investigation for Salmonella Typhimurium (ST19 and ST36), but whole genome–wide analysis may be required for the tight genetic clone of monophasic variants (ST34)

    Hunted Wild Boars in Sardinia: Prevalence, Antimicrobial Resistance and Genomic Analysis of Salmonella and Yersinia enterocolitica

    No full text
    The objective of this investigation was to evaluate Salmonella and Yersinia enterocolitica prevalence in wild boars hunted in Sardinia and further characterize the isolates and analyse antimicrobial resistance (AMR) patterns. In order to assess slaughtering hygiene, an evaluation of carcasses microbial contamination was also carried out. Between 2020 and 2022, samples were collected from 66 wild boars hunted during two hunting seasons from the area of two provinces in northern and central Sardinia (Italy). Samples collected included colon content samples, mesenteric lymph nodes samples and carcass surface samples. Salmonella and Y. enterocolitica detection was conducted on each sample; also, on carcass surface samples, total aerobic mesophilic count and Enterobacteriaceae count were evaluated. On Salmonella and Y. enterocolitica isolates, antimicrobial susceptibility was tested and whole genome sequencing was applied. Salmonella was identified in the colon content samples of 3/66 (4.5%) wild boars; isolates were S. enterica subs. salamae, S. ser. elomrane and S. enterica subs. enterica. Y. enterocolitica was detected from 20/66 (30.3%) wild boars: in 18/66 (27.3%) colon contents, in 3/66 (4.5%) mesenteric lymph nodes and in 3/49 (6.1%) carcass surface samples. In all, 24 Y. enterocolitica isolates were analysed and 20 different sequence types were detected, with the most common being ST860. Regarding AMR, no resistance was detected in Salmonella isolates, while expected resistance towards β-lactams (blaA gene) and streptogramin (vatF gene) was observed in Y. enterocolitica isolates (91.7% and 4.2%, respectively). The low presence of AMR is probably due to the low anthropic impact in the wild areas. Regarding the surface contamination of carcasses, values (mean ± standard deviation log10 CFU/cm2) were 2.46 ± 0.97 for ACC and 1.07 ± 1.18 for Enterobacteriaceae. The results of our study confirm that wild boars can serve as reservoirs and spreaders of Salmonella and Y. enterocolitica; the finding of Y. enterocolitica presence on carcass surface highlights how meat may become superficially contaminated, especially considering that contamination is linked to the conditions related to the hunting, handling and processing of game animals
    corecore