37 research outputs found

    Altered miRNA Expression in Canine Retinas During Normal Development and in Models of Retinal Degeneration

    Get PDF
    Background Although more than 246 loci/genes are associated with inherited retinal diseases, the mechanistic events that link genetic mutations to photoreceptor cell death are poorly understood. miRNAs play a relevant role during retinal development and disease. Thus, as a first step in characterizing miRNA involvement during disease expression and progression, we examined miRNAs expression changes in normal retinal development and in four canine models of retinal degenerative disease. Results The initial microarray analysis showed that 50 miRNAs were differentially expressed (DE) early (3 vs. 7 wks) in normal retina development, while only 2 were DE between 7 and 16 wks, when the dog retina is fully mature. miRNA expression profiles were similar between dogs affected with xlpra2, an early-onset retinal disease caused by a microdeletion in RPGRORF15, and normal dogs early in development (3 wks) and at the peak of photoreceptor death (7 wks), when only 2 miRNAs were DE. However, the expression varied much more markedly during the chronic cell death stage at 16 wks (118 up-/55 down-regulated miRNAs). Functional analyses indicated that these DE miRNAs are associated with an increased inflammatory response, as well as cell death/survival. qRT-PCR of selected apoptosis-related miRNAs (“apoptomirs”) confirmed the microarray results in xlpra2, and extended the analysis to the early-onset retinal diseases rcd1 (PDE6B-mutation) and erd (STK38L-mutation), as well as the slowly progressing prcd (PRCD-mutation). The results showed up-regulation of anti-apoptotic (miR-9, -19a, -20, -21, -29b, -146a, -155, -221) and down-regulation of pro-apoptotic (miR-122, -129) apoptomirs in the early-onset diseases and, with few exceptions, also in the prcd-mutants. Conclusions Our results suggest that apoptomirs might be expressed by diseased retinas in an attempt to counteract the degenerative process. The pattern of expression in diseased retinas mirrored the morphology and cell death kinetics previously described for these diseases. This study suggests that common miRNA regulatory mechanisms may be involved in retinal degeneration processes and provides attractive opportunities for the development of novel miRNA-based therapies to delay the progression of the degenerative process

    Canine Multifocal Retinopathy in the Australian Shepherd: A Case Report

    Get PDF
    A 1-year-old Australian Shepherd (AS) was presented for a routine hereditary eye examination. During the examination multiple raised, brown to orange lesions were noted in the fundus, which could not be attributed to a known retinal disease in this breed. As they clinically most closely resembled canine multifocal retinopathy (cmr) and no indication of an acquired condition was found, genetic tests for BEST1 gene mutations were performed. These showed the dog to be homozygous for the cmr1 (C73T/R25X) gene defect. Furthermore, ultrasound (US), electroretinography (ERG), and optical coherence tomography were performed, confirming changes typical for cmr. Subsequently, the AS pedigree members were genetically and clinically tested, demonstrating autosomal recessive inheritance with no clinical symptoms in carrier animals, as was previously described for cmr. To our knowledge, this is the first reported case of canine multifocal retinopathy in the AS breed. Further investigations are under way

    Bovine Cardiac Troponin I Gene (\u3cem\u3eTNNI3\u3c/em\u3e) as a Candidate Gene for Bovine Dilated Cardiomyopathy

    Get PDF
    The cardiac troponin complex, which is an important component of the contractile apparatus, is composed of the three subunits troponin I (TnI), troponin C (TnC) and troponin T (TnT). Troponin I is the inhibitory subunit and consists of three isoforms encoded by TNNI1, TNNI2 and TNNI3 genes, respectively. Due to the different types of cardiomyopathies caused by mutations in the TNNI3 gene and its fluorescence in situ hybridization (FISH) mapping on bovine chromosome 18q26, which was shown to be linked to the recessively inherited bovine dilated cardiomyopathy (BDCMP), bovine TNNI3 was considered as candidate gene for BDCMP. Real-time polymerase chain reaction (PCR) TNNI3 expression analysis resulted in a significant difference between BDCMP affected and unaffected animals when normalized to ACTB gene expression, but there was no significant difference in expression when normalized to GAPDH. Northen blotting experiment was in agreement with the expression analysis and did not reveal a significant difference between the group of BDCMP affected and unaffected animals. Sequencing of the bovine TNNI3 gene revealed a single nucleotide polymorphism in intron 6 (c.378+315G\u3eA), but this single nucleotide polymorphism (SNP)was present regardless of the BDCMP status. In summary our data provide evidence to exclude the bovine TNNI3 gene as a candidate for BDCMP

    Assessment of Canine \u3cem\u3eBEST1\u3c/em\u3e Variations Identifies New Mutations and Establishes an Independent Bestrophinopathy Model (\u3cem\u3ecmr3\u3c/em\u3e)

    Get PDF
    Purpose: Mutations in bestrophin 1 (BEST1) are associated with a group of retinal disorders known as bestrophinopathies in man and canine multifocal retinopathies (cmr) in the dog. To date, the dog is the only large animal model suitable for the complex characterization and in-depth studies of Best-related disorders. In the first report of cmr, the disease was described in a group of mastiff-related breeds (cmr1) and the Coton de Tulear (cmr2). Additional breeds, e.g., the Lapponian herder (LH) and others, subsequently were recognized with similar phenotypes, but linked loci are unknown. Analysis of the BEST1 gene aimed to identify mutations in these additional populations and extend our understanding of genotype–phenotype associations. Methods: Animals were subjected to routine eye exams, phenotypically characterized, and samples were collected for molecular studies. Known BEST1 mutations were assessed, and the canine BEST1 coding exons were amplified and sequenced in selected individuals that exhibited a cmr compatible phenotype but that did not carry known mutations. Resulting sequence changes were genotyped in several different breeds and evaluated in the context of the phenotype. Results: Seven novel coding variants were identified in exon 10 of cBEST1. Two linked mutations were associated with cmr exclusive to the LH breed (cmr3). Two individuals of Jämthund and Norfolk terrier breeds were heterozygous for two conservative changes, but these were unlikely to have disease-causing potential. Another three substitutions were found in the Bernese mountain dog that were predicted to have a deleterious effect on protein function. Previously reported mutations were excluded from segregation in these populations, but cmr1 was confirmed in another mastiff-related breed, the Italian cane corso. Conclusions: A third independent canine model for human bestrophinopathies has been established in the LH breed. While exhibiting a phenotype comparable to cmr1 and cmr2, the novel cmr3 mutation is predicted to be based on a distinctly different molecular mechanism. So far cmr2 and cmr3 are exclusive to a single dog breed each. In contrast, cmr1 is found in multiple related breeds. Additional sequence alterations identified in exon 10 of cBEST1 in other breeds exhibit potential disease-causing features. The inherent genetic and phenotypic variation observed with retinal disorders in canines is complicated further by cmr3 being one of four distinct genetic retinal traits found to segregate in LH. Thus, a combination of phenotypic, molecular, and population analysis is required to establish a strong phenotype–genotype association. These results indicate that cmr has a larger impact on the general dog population than was initially suspected. The complexity of these models further confirms the similarity to human bestrophinopathies. Moreover, analyses of multiple canine models will provide additional insight into the molecular basis underlying diseases caused by mutations in BEST1

    Recombinant AAV-Mediated \u3cem\u3eBEST1\u3c/em\u3e Transfer to the Retinal Pigment Epithelium: Analysis of Serotype-Dependent Retinal Effects

    Get PDF
    Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of retinal disorders commonly referred to as bestrophinopathies and usually diagnosed in early childhood or adolescence. The disease primarily affects macular and paramacular regions of the eye leading to major declines in central vision later in life. Currently, there is no cure or surgical management for BEST1-associated disorders. The recently characterized human disease counterpart, canine multifocal retinopathy (cmr), recapitulates a full spectrum of clinical and molecular features observed in human bestrophinopathies and offers a valuable model system for development and testing of therapeutic strategies. In this study, the specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2 promoter were assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype was associated with cone damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector serotype carrying either GFP reporter or BEST1 transgene under control of human VMD2 promoter was safe, and enabled specific transduction of the RPE cell monolayer that was stable for up to 6 months post injection. These encouraging studies with the rAAV2/2 vector lay the groundwork for development of gene augmentation therapy for human bestrophinopathies

    Pharmacological Modulation of Photoreceptor Outer Segment Degradation in a Human iPS Cell Model of Inherited Macular Degeneration

    Get PDF
    Degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is essential for vision, and studies have implicated altered POS processing in the pathogenesis of some retinal degenerative diseases. Consistent with this concept, a recently established hiPSC-RPE model of inherited macular degeneration, Best disease (BD), displayed reduced rates of POS breakdown. Herein we utilized this model to determine (i) if disturbances in protein degradation pathways are associated with delayed POS digestion and (ii) whether such defect(s) can be pharmacologically targeted. We found that BD hiPSC-RPE cultures possessed increased protein oxidation, decreased free-ubiquitin levels, and altered rates of exosome secretion, consistent with altered POS processing. Application of valproic acid (VPA) with or without rapamycin increased rates of POS degradation in our model, whereas application of bafilomycin-A1 decreased such rates. Importantly, the negative effect of bafilomycin-A1 could be fully reversed by VPA. The utility of hiPSC-RPE for VPA testing was further evident following examination of its efficacy and metabolism in a complementary canine disease model. Our findings suggest that disturbances in protein degradation pathways contribute to the POS processing defect observed in BD hiPSC-RPE, which can be manipulated pharmacologically. These results have therapeutic implications for BD and perhaps other maculopathies

    Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model for Best Disease

    Get PDF
    PURPOSE. Canine multifocal retinopathy (cmr) is an autosomal recessive disorder of multiple dog breeds. The disease shares a number of clinical and pathologic similarities with Best macular dystrophy (BMD), and cmr is proposed as a new large animal model for Best disease. METHODS. cmr was characterized by ophthalmoscopy and histopathology and compared with BMD-affected patients. BEST1 (alias VMD2), the bestrophin gene causally associated with BMD, was evaluated in the dog. Canine ortholog cDNA sequence was cloned and verified using RPE/choroid 5′- and 3′-RACE. Expression of the canine gene transcripts and protein was analyzed by Northern and Western blotting and immunocytochemistry. All exons and the flanking splice junctions were screened by direct sequencing. RESULTS. The clinical phenotype and pathology of cmr closely resemble lesions of BMD. Canine VMD2 spans 13.7 kb of genomic DNA on CFA18 and shows a high level of conservation among eukaryotes. The transcript is predominantly expressed in RPE/choroid and encodes bestrophin, a 580-amino acid protein of 66 kDa. Immunocytochemistry of normal canine retina demonstrated specific localization of protein to the RPE basolateral plasma membranes. Two disease-specific sequence alterations were identified in the canine VMD2 gene: a C73T stop mutation in cmr1 and a G482A missense mutation in cmr2. CONCLUSIONS. The authors propose these two spontaneous mutations in the canine VMD2 gene, which cause cmr, as the first naturally occurring animal model of BMD. Further development of the cmr models will permit elucidation of the complex molecular mechanism of these retinopathies and the development of potential therapies

    Bestrophinopathy: An RPE-Photoreceptor Interface Disease

    Get PDF
    Bestrophinopathies, one of the most common forms of inherited macular degenerations, are caused by mutations in the BEST1 gene expressed in the retinal pigment epithelium (RPE). Both human and canine BEST1-linked maculopathies are characterized by abnormal accumulation of autofluorescent material within RPE cells and bilateral macular or multifocal lesions; however, the specific mechanism leading to the formation of these lesions remains unclear. We now provide an overview of the current state of knowledge on the molecular pathology of bestrophinopathies, and explore factors promoting formation of RPE-neuroretinal separations, using the first spontaneous animal model of BEST1-associated retinopathies, canine Best (cBest). Here, we characterize the nature of the autofluorescent RPE cell inclusions and report matching spectral signatures of RPE-associated fluorophores between human and canine retinae, indicating an analogous composition of endogenous RPE deposits in Best Vitelliform Macular Dystrophy (BVMD) patients and its canine disease model. This study also exposes a range of biochemical and structural abnormalities at the RPE-photoreceptor interface related to the impaired cone-associated microvillar ensheathment and compromised insoluble interphotoreceptor matrix (IPM), the major pathological culprits responsible for weakening of the RPE-neuroretina interactions, and consequently, formation of vitelliform lesions. These salient alterations detected at the RPE apical domain in cBest as well as in BVMD- and ARB-hiPSC-RPE model systems provide novel insights into the pathological mechanism of BEST1-linked disorders that will allow for development of critical outcome measures guiding therapeutic strategies for bestrophinopathies. © 2017 Elsevier Lt

    Canine CNGA3 Gene Mutations Provide Novel Insights Into Human Achromatopsia-Associated Channelopathies and Treatment

    Get PDF
    Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivoand channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD) simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ) domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivochannels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients

    BEST1 Gene Therapy Corrects a Diffuse Retina-Wide Microdetachment Modulated by Light Exposure

    Get PDF
    Mutations in the BEST1 gene cause detachment of the retina and degeneration of photoreceptor (PR) cells due to a primary channelopathy in the neighboring retinal pigment epithelium (RPE) cells. The pathophysiology of the interaction between RPE and PR cells preceding the formation of retinal detachment remains not well-understood. Our studies of molecular pathology in the canine BEST1 disease model revealed retina-wide abnormalities at the RPE-PR interface associated with defects in the RPE microvillar ensheathment and a cone PR-associated insoluble interphotoreceptor matrix. In vivo imaging demonstrated a retina-wide RPE-PR microdetachment, which contracted with dark adaptation and expanded upon exposure to a moderate intensity of light. Subretinal BEST1 gene augmentation therapy using adeno-associated virus 2 reversed not only clinically detectable subretinal lesions but also the diffuse microdetachments. Immunohistochemical analyses showed correction of the structural alterations at the RPE-PR interface in areas with BEST1 transgene expression. Successful treatment effects were demonstrated in three different canine BEST1 genotypes with vector titers in the 0.1-to-5E11 vector genomes per mL range. Patients with biallelic BEST1 mutations exhibited large regions of retinal lamination defects, severe PR sensitivity loss, and slowing of the retinoid cycle. Human translation of canine BEST1 gene therapy success in reversal of macro- and microdetachments through restoration of cytoarchitecture at the RPE-PR interface has promise to result in improved visual function and prevent disease progression in patients affected with bestrophinopathies
    corecore