83 research outputs found
Modelling the potential of rainwater harvesting to improve the sustainability of landscape and public garden irrigation
Access to water for irrigating amenity landscape and public gardens is under intense pressure due to the rising competition for water between different sectors, exacerbated by increased drought risk and climate change. Rainwater harvesting (RWH) has the potential to reduce the economic impacts of restrictions on irrigation abstraction in dry years and to build resilience to future water shortages. This study investigated the hydrological viability of RWH for the landscape and public garden sector based on an analysis of five Royal Horticultural Society gardens. A RWH model was developed and combined with on-site observations, key informant interviews and GIS analyses, to estimate irrigation demands and the volumes of harvested rainfall for contrasting agroclimatic years. The results showed that gardens located in wetter regions and with low irrigation water demand to harvestable area ratio had a higher RWH potential and could almost exclusively rely on rainwater to meet irrigation demand, even in dry years. RWH potential is more limited for gardens in drier regions where they would require larger areas to harvest rainwater and for storage. Appropriately designed rainwater harvesting systems offer the potential to remove most of the risk of irrigation abstraction restrictions during dry years and associated impacts on amenity planting quality and visitor experience
Slow Light Propagation in a Thin Optical Fiber via Electromagnetically Induced Transparency
We propose a novel configuration that utilizes electromagnetically induced
transparency (EIT) to tailor a fiber mode propagating inside a thin optical
fiber and coherently control its dispersion properties to drastically reduce
the group velocity of the fiber mode. The key to this proposal is: the
evanescent-like field of the thin fiber strongly couples with the surrounding
active medium, so that the EIT condition is met by the medium. We show how the
properties of the fiber mode is modified due to the EIT medium, both
numerically and analytically. We demonstrate that the group velocity of the new
modified fiber mode can be drastically reduced (approximately 44 m/sec) using
the coherently prepared orthohydrogen doped in a matrix of parahydrogen crystal
as the EIT medium.Comment: 10 pages in two column RevTex4, 6 Figure
Recommended from our members
Environmental enrichment reduces signs of boredom in caged mink
Animals housed in impoverished cages are often labelled 'bored'. They have also been called 'apathetic' or 'depressed', particularly when profoundly inactive. However, these terms are rarely operationally defined and validated. As a negative state caused by under-stimulation, boredom should increase interest in stimuli of all kinds. Apathy (lack of interest), by contrast, should manifest as decreased interest in all stimuli, while anhedonia (loss of pleasure, a depressive symptom) should specifically decrease interest in normally rewarding stimuli. We tested the hypotheses that mink, a model carnivore, experience more boredom, depression-like apathy, or anhedonia in non-enriched (NE) cages than in complex, enriched (E) cages. We exposed 29 subjects (13 E, 16 NE) to ten stimuli categorized a priori as aversive (e.g. air puffs), rewarding (e.g. evoking chasing) or ambiguous/neutral (e.g. candles). Interest in stimuli was assessed via latencies to contact, contact durations, and durations oriented to stimuli. NE mink contacted all stimuli faster (P = 0.003) than E mink, and spent longer oriented to/in contact with them, albeit only significantly so for ambiguous ones (treatment*type P<0.013). With stimulus category removed from statistical models, interest in all stimuli was consistently higher among NE mink (P<0.0001 for all measures). NE mink also consumed more food rewards (P = 0.037). Finally, we investigated whether lying down while awake and stereotypic behaviour (both increased by NE housing) predicted these responses. Lying awake positively co-varied with certain measures of increased exploration. In contrast, stereotypic 'scrabbling' or locomotion (e.g. pacing) did not. Overall, NE mink showed no evidence of apathy or depression, but instead a heightened investigation of diverse stimuli consistent with boredom. This state was potentially indicated by spending much time lying still but awake (although this result requires replication). Boredom can thus be operationalized and assessed empirically in non-human animals. It can also be reduced by environmental enrichment
Effect of the 3K background radiation on ultrahigh energy cosmic rays
In this work we re-examine the opacity of the cosmic background radiation to
the propagation of extremely high energy cosmic rays. We use the continuous
energy loss approximation to provide spectral modification factors for several
hypothesized cosmic ray sources. Earlier problems with this approximation are
resolved including the effects of resonances other than the .Comment: 13 pages revtex, 3 figures. To appear in Phys. Rev.
Intergenerational Community-Based Research and Creative Practice: Promoting Environmental Sustainability in Jinja, Uganda
This article critically reflects on the methodological approach developed for a recent project based in Jinja, Uganda, that sought to generate new forms of environmental knowledge and action utilizing diverse forms of creative intergenerational practice embedded within a broader framework of community-based participatory research. This approach provided new opportunities for intergenerational dialogue in Jinja, generated increased civic environmental engagement, and resulted in a participant-led campaign to share knowledge regarding sustainable biomass consumption. We term this approach intergenerational community-based research and creative practice. We discuss the advantages of this model while also reflecting throughout on the challenges of the approach
Equilibrium configurations of two charged masses in General Relativity
An asymptotically flat static solution of Einstein-Maxwell equations which
describes the field of two non-extreme Reissner - Nordstr\"om sources in
equilibrium is presented. It is expressed in terms of physical parameters of
the sources (their masses, charges and separating distance). Very simple
analytical forms were found for the solution as well as for the equilibrium
condition which guarantees the absence of any struts on the symmetry axis. This
condition shows that the equilibrium is not possible for two black holes or for
two naked singularities. However, in the case when one of the sources is a
black hole and another one is a naked singularity, the equilibrium is possible
at some distance separating the sources. It is interesting that for
appropriately chosen parameters even a Schwarzschild black hole together with a
naked singularity can be "suspended" freely in the superposition of their
fields.Comment: 4 pages; accepted for publication in Phys. Rev.
Global transpiration data from sap flow measurements: The SAPFLUXNET database
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80% of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50% of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56% of the datasets. Many datasets contain data for species that make up 90% or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr"R package-designed to access, visualize, and process SAPFLUXNET data-is available from CRAN. © 2021 Rafael Poyatos et al.This research was supported by the Minis-terio de EconomÃa y Competitividad (grant no. CGL2014-55883-JIN), the Ministerio de Ciencia e Innovación (grant no. RTI2018-095297-J-I00), the Ministerio de Ciencia e Innovación (grant no. CAS16/00207), the Agència de Gestió d’Ajuts Universitaris i de Recerca (grant no. SGR1001), the Alexander von Humboldt-Stiftung (Humboldt Research Fellowship for Experienced Researchers (RP)), and the Institució Catalana de Recerca i Estudis Avançats (Academia Award (JMV)). VÃctor Flo was supported by the doctoral fellowship FPU15/03939 (MECD, Spain)
- …