5 research outputs found

    The Relationship of Loss, Mean Age of Air and the Distribution of CFCs to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    Get PDF
    Man-made molecules called chlorofluorcarbons (CFCs) are broken apart in the stratosphere by high energy light, and the reactive chlorine gases that come from them cause the ozone hole. Since the ozone layer stops high energy light from reaching low altitudes, CFCs must be transported to high altitudes to be broken apart. The number of molecules per volume (the density) is much smaller at high altitudes than near the surface, and CFC molecules have a very small chance of reaching that altitude in any particular year. Many tons of CFCs were put into the atmosphere during the end of the last century, and it will take many years for all of them to be destroyed. Each CFC has an atmospheric lifetime that depends on the amount of energy required to break them apart. Two of the gases that were made the most are CFC13 and CF2C12. It takes more energy to break apart CF2C12 than CFC13, and its lifetime is about 100 years, nearly twice as long as the lifetime for CFC13. It is hard to figure out the lifetimes from surface measurements because we don't know exactly how much was released into the air each year. Atmospheric models are used to predict what will happen to ozone and other gases as the CFCs decrease and other gases like C02 continue to increase during the next century. CFC lifetimes are used to predict future concentrations and all assessment models use the predicted future concentrations. The models have different circulations and the amount of CFC lost according to the model may not match the loss that is expected according to the lifetime. In models the amount destroyed per year depends on how fast the model pushes air into the stratosphere and how much goes to high altitudes each year. This paper looks at the way the model circulation changes the lifetimes, and looks at measurements that tell us which model is more realistic. Some models do a good job reproducing the age-of-air, which tells us that these models are circulating the stratospheric air at the right speed. These same models also do a good job reproducing the amount of CFCs in the lower atmosphere where they were measured by instruments on NASA's ER-2, a research plane that flies in the lower stratosphere. The lifetime for CFC13 that is calculated using the models that do the best job matching the data is about 25% longer than most people thought. This paper shows that using these measurements to decide which models are more realistic helps us understand why their predictions are different from each other and also to decide which predictions are more likely

    Prevalence of intestinal parasitic infections among HIV patients in Benin City, Nigeria

    Get PDF
    This study was carried out to determine the presence of intestinal parasites and their correlation with CD4+ T-cell counts and demographics among human immunodeficiency virus (HIV)-positive patients in Benin City, Nigeria. Stool specimens from 2,000 HIV-positive patients and 500 controls (HIV-negative individuals) were examined for ova, cysts, or parasites, using standard procedures. In addition, patient's blood samples were analyzed for CD4 counts by flow cytometry. An overall prevalence rate of 15.3% was observed among HIV-positive patients while 6.2% was noted among non-HIV subjects. HIV status was a significant (P<0.0001) risk factor for acquiring intestinal parasitic infections. Male gender, CD4 count <200cell/µl, and diarrhea were significantly associated with an increased prevalence of intestinal parasitic infections among HIV-positive patients. The level of education, occupation, and source of water among HIV patients significantly (P<0.0001) affected the prevalence of intestinal parasitic infections. Ascaris lumbricoides was the most predominant parasite in both HIV-positive patients and controls. A CD4 count <200 cells/µl was significantly associated with only Isospora belli and Cryptosporidium infections. The presence of pathogenic intestinal parasites such as A. lumbricoides, hookworm, Giardia intestinalis, Entamoeba histolytica, Trichuris trichiura, and Taenia species among HIV-infected persons should not be neglected. Cryptosporidium species and I. belli were the opportunistic parasites observed in this study. Routine screening for intestinal parasites in HIV-positive patients is advocated

    Selective area bandgap control during MBE growth of InGaAs/InAlAs QWs for optoelectronic device applications

    No full text
    Semiconductor lasers emitting at 1.3 ?m and 1.55 ?m wavelengths are of particular interest because of their application in optical fibre communication systems. In this work, we investigate for the first time the process of indium migration during the growth of InGaAs-InAlAs single quantum wells grown by MBE on patterned InP substrates for the fabrication of long wavelength integrated optoelectronic devicesNRC publication: Ye
    corecore