28 research outputs found

    Individual Professional Practice in the Company

    Get PDF
    Import 23/08/2017Cílem této bakalářské práce je popsat absolvování odborné praxe ve firmě HS Interactive s.r.o. Praxe byla zaměřena na vývoj mobilní aplikace pro operační systém Android. Aplikace je mobilním klientem pro sociální síť MatchToMe. V úvodu popisuji důvody, které vedly k výběru odborné praxe. Dále se věnuji úkolům, které mi byly zadány s jejich implementací a postupem řešení problémů, které se objevily při vývoji. Závěr práce je věnován zhodnocení získaných zkušeností a dosažených výsledků.Purpose of this bachelor thesis is to describe a professional practice in company HS Interactive s.r.o. Practice was focused on the development of mobile application for the operating system Android. The application is a mobile client for social network MatchToMe. In the introduction I describe reasons that led to the selection of professional practice. Then I describe tasks that I have been awarded with their implementations and process of solution issues that have emerged during development. The conclusion of thesis is dedicated to the evaluation of the experience gained and the results achieved.440 - Katedra telekomunikační technikyvýborn

    Table3_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.XLSX

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Image4_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.JPEG

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Image5_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.JPEG

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Image2_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.JPEG

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Table2_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.XLSX

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Image1_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.JPEG

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Image3_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.JPEG

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Table1_Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes.XLSX

    No full text
    In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79×10−8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.</p

    Table_1.DOCX

    No full text
    <p>The domestic pigs have been undergone intense selection pressures for these development of interested traits following domestication and modern breeding. This has altered many traits in most of pig breeds, such as growth rate, body weight, fertility, and immunity. Thus, the objectives of this study were to (1) detect these selection signatures and identify the candidate genes that show evidences of recent artificial selection at the level of whole genome, (2) be beneficial to understand the relationship between genomic structure and phenotypic diversity, and (3) highlight the key roles of these candidate genes in growth and development in the two breeds. The data consisted of total raw number of 345570 single nucleotide polymorphisms (SNPs) in 1200 individuals from the Chinese Landrace pigs (L, n = 600) and Yorkshire pigs (Y, n = 600). Based on these SNPs data, two complementary methods, population differentiation (Fst) and composite likelihood ratio test (CLR), were carried out to detect the selection signatures in this study. A total of 540 potential selection regions (50 kb) which contained 111 candidate genes were detected for Landrace-Yorkshire pair (L-Y) by Fst. In addition, 73 and 125 candidate genes were found for Landrace pigs and Yorkshire pigs by CLR test based on 321 and 628 potential selection regions, respectively. Some candidate genes are associated with important traits and signaling pathways including the ACACA, MECR, COL11A1, GHR, IGF1R, IGF2R, IFNG, and MTOR gene. The ACACA and MECR gene are related to fatty acid biosynthesis. The COL11A1 gene is essential for the development of the normal differentiation. The GHR, IGF1R, and IGF2R gene are significant candidate genes which play major roles in the growth and development in animals. The IFNG gene is associated with some aspects of immune response. The MTOR gene regulates many signaling pathways and signaling transduction pathway.</p
    corecore