116 research outputs found

    Chemicals having estrogenic activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins

    Get PDF
    Background: Chemicals that have estrogenic activity (EA) can potentially cause adverse health effects in mammals including humans, sometimes at low doses in fetal through juvenile stages with effects detected in adults. Polycarbonate (PC) thermoplastic resins made from bisphenol A (BPA), a chemical that has EA, are now often avoided in products used by babies. Other BPA-free thermoplastic resins, some hypothesized or advertised to be EA-free, are replacing PC resins used to make reusable hard and clear thermoplastic products such as baby bottles. Methods: We used two very sensitive and accurate in vitro assays (MCF-7 and BG1Luc human cell lines) to quantify the EA of chemicals leached into ethanol or water/saline extracts of fourteen unstressed or stressed (autoclaving, microwaving, UV radiation) thermoplastic resins. Estrogen receptor (ER)-dependent agonist responses were confirmed by their inhibition with the ER antagonist ICI 182,780. Results: Our data showed that some (4/14) unstressed and stressed BPA-free thermoplastic resins leached chemicals having significant levels of EA, including one polystyrene (PS), and three Tritan™ resins, the latter reportedly EA-free. Exposure to UV radiation in natural sunlight resulted in an increased release of EA from Tritan™ resins. Triphenyl-phosphate (TPP), an additive used to manufacture some thermoplastic resins such as Tritan™, exhibited EA in both MCF-7 and BG1Luc assays. Ten unstressed or stressed glycol-modified polyethylene terephthalate (PETG), cyclic olefin polymer (COP) or copolymer (COC) thermoplastic resins did not release chemicals with detectable EA under any test condition. Conclusions: This hazard survey study assessed the release of chemicals exhibiting EA as detected by two sensitive, widely used and accepted, human cell line in vitro assays. Four PC replacement resins (Tritan™ and PS) released chemicals having EA. However, ten other PC-replacement resins did not leach chemicals having EA (EA-free-resins). These results indicate that PC-replacement plastic products could be made from EA-free resins (if appropriate EA-free additives are chosen) that maintain advantages of re-usable plastic items (price, weight, shatter resistance) without releasing chemicals having EA that potentially produce adverse health effects on current or future generations.This work was supported by the following NIH/NIEHS grants: R44 ES011469, 01–03 (CZY); 1R43/44 ES014806, 01–03 (CZY); subcontract (CZY, PI) on an NIH Grant 01–03 43/44ES018083-01. This work was also supported by NIH grants to MSD (P42 ES004699), and DJK and SIY (1R43ES018083-01-03, NIEHS 1R44ES019442-01-03 and NIEHS 2R44ES016964-01-03).Neuroscienc

    Ginsenosides are novel naturally-occurring aryl hydrocarbon receptor ligands.

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals. In this study, we examined the ability of a series of ginsenosides extracted from ginseng, a traditional Chinese medicine, to bind to and activate/inhibit the AHR and AHR signal transduction. Utilizing a combination of ligand and DNA binding assays, molecular docking and reporter gene analysis, we demonstrated the ability of selected ginsenosides to directly bind to and activate the guinea pig cytosolic AHR, and to stimulate/inhibit AHR-dependent luciferase gene expression in a recombinant guinea pig cell line. Comparative studies revealed significant species differences in the ability of ginsenosides to stimulate AHR-dependent gene expression in guinea pig, rat, mouse and human cell lines. Not only did selected ginsenosides preferentially activate the AHR from one species and not others, mouse cell line was also significantly less responsive to these chemicals than rat and guinea pig cell lines, but the endogenous gene CYP1A1 could still be inducted in mouse cell line. Overall, the ability of these compounds to stimulate AHR signal transduction demonstrated that these ginsenosides are a new class of naturally occurring AHR agonists

    Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury

    Get PDF
    Acute kidney injury (AKI) is a syndrome of abrupt loss of renal functions. The underlying pathological mechanisms of AKI remain largely unknown. BCL2-interacting protein 3 (BNIP3) has dual functions of regulating cell death and mitophagy, but its pathophysiological role in AKI remains unclear. Here, we demonstrated an increase of BNIP3 expression in cultured renal proximal tubular epithelial cells following oxygen-glucose deprivation-reperfusion (OGD-R) and in renal tubules after renal ischemia-reperfusion (IR)-induced injury in mice. Functionally, silencing Bnip3 by specific short hairpin RNAs in cultured renal tubular cells reduced OGD-R-induced mitophagy, and potentiated OGD-R-induced cell death. In vivo, Bnip3 knockout worsened renal IR injury, as manifested by more severe renal dysfunction and tissue injury. We further showed that Bnip3 knockout reduced mitophagy, which resulted in the accumulation of damaged mitochondria, increased production of reactive oxygen species, and enhanced cell death and inflammatory response in kidneys following renal IR. Taken together, these findings suggest that BNIP3-mediated mitophagy has a critical role in mitochondrial quality control and tubular cell survival during AKI

    Toxicology in the Fast Lane: Application of High-Throughput Bioassays to Detect Modulation of Key Enzymes and Receptors

    Get PDF
    BackgroundLegislation at state, federal, and international levels is requiring rapid evaluation of the toxicity of numerous chemicals. Whole-animal toxicologic studies cannot yield the necessary throughput in a cost-effective fashion, leading to a critical need for a faster and more cost-effective toxicologic evaluation of xenobiotics.ObjectivesWe tested whether mechanistically based screening assays can rapidly provide information on the potential for compounds to affect key enzymes and receptor targets, thus identifying those compounds requiring further in-depth analysis.MethodsA library of 176 synthetic chemicals was prepared and examined in a high-throughput screening (HTS) manner using nine enzyme-based and five receptor-based bioassays.ResultsAll the assays have high Z' values, indicating good discrimination among compounds in a reliable fashion, and thus are suitable for HTS assays. On average, three positive hits were obtained per assay. Although we identified compounds that were previously shown to inhibit a particular enzyme class or receptor, we surprisingly discovered that triclosan, a microbiocide present in personal care products, inhibits carboxylesterases and that dichlone, a fungicide, strongly inhibits the ryanodine receptors.ConclusionsConsidering the need to rapidly screen tens of thousands of anthropogenic compounds, our study shows the feasibility of using combined HTS assays as a novel approach toward obtaining toxicologic data on numerous biological end points. The HTS assay approach is very useful to quickly identify potentially hazardous compounds and to prioritize them for further in-depth studies

    Prediction of ESRD in IgA Nephropathy Patients from an Asian Cohort: A Random Forest Model

    Get PDF
    Background/Aims: There is an increasing risk of end-stage renal disease (ESRD) among Asian people with immunoglobulin A nephropathy (IgAN). A computer-aided system for ESRD prediction in Asian IgAN patients has not been well studied. Methods: We retrospectively reviewed biopsy-proven IgAN patients treated at the Department of Nephrology of the Second Xiangya Hospital from January 2009 to November 2013. Demographic and clinicopathological data were obtained within 1 month of renal biopsy. A random forest (RF) model was employed to predict the ESRD status in IgAN patients. All cases were initially trained and validated, taking advantage of the out-of-bagging(OOB) error. Predictors used in the model were selected according to the Gini impurity index in the RF model and verified by logistic regression analysis. The area under the receiver operating characteristic(ROC) curve (AUC) and F-measure were used to evaluate the RF model. Results: A total of 262 IgAN patients were enrolled in this study with a median follow-up time of 4.66 years. The importance rankings of predictors of ESRD in the RF model were first obtained, indicating some of the most important predictors. Logistic regression also showed that these factors were statistically associated with ESRD status. We first trained an initial RF model using gender, age, hypertension, serum creatinine, 24-hour proteinuria and histological grading suggested by the Clinical Decision Support System for IgAN (CDSS, www.IgAN.net). This 6-predictor model achieved a F-measure of 0.8 and an AUC of 92.57%. By adding Oxford-MEST scores, this model outperformed the initial model with an improved AUC (96.1%) and F-measure (0.823). When C3 staining was incorporated, the AUC was 97.29% and F-measure increased to 0.83. Adding the estimated glomerular filtration rate (eGFR) improved the AUC to 95.45%. We also observed improved performance of the model with additional inputs of blood urea nitrogen (BUN), uric acid, hemoglobin and albumin. Conclusion: In addition to the predictors in the CDSS, Oxford-MEST scores, C3 staining and eGFR conveyed additional information for ESRD prediction in Chinese IgAN patients using a RF model

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Quantifying spatial phylogenetic structures of fully stem-mapped plant communities

    No full text
    Analysis of the phylogenetic similarity of co-occurring species at different spatial scales is increasingly used for decoding community assembly rules. Here, we integrated the analysis of phylobetadiversity and marked point pattern analysis to yield a new metric, the phylogenetic mark correlation function, k(d)(r), to quantify spatial phylogenetic structure of fully stem-mapped communities.k(d)(r) is defined as the expected phylogenetic distance of two heterospecifics separated by spatial distance r, and normalized with the expected phylogenetic distance of two heterospecifics taken randomly from a study area. It measures spatial phylogenetic turnover relative to spatial species turnover and is closely related with the spatially explicit Simpson index. We used simulated fully stem-mapped plant communities with known spatial phylogenetic structures to assess type I and II errors of the phylogenetic mark correlation function k(d)(r) under a null model of random phylogenetic spatial structure, and to test the ability of the k(d)(r) to detect scale-dependent signals of phylogenetic spatial structure. We also compared the performance of the k(d)(r) with two existing measures of phylobetadiversity that have been previously used to analyse fully stem-mapped plots. Finally, we explored the spatial phylogenetic structure of a 24-ha fully stem-mapped subtropical forest in China. Simulation tests showed that the new metric yielded correct type I and type II errors and accurately detected the spatial scales at which various processes (e.g. habitat filtering and competition) were invoked to generate spatial phylogenetic structures. The power of the k(d)(r) was not affected by a phylogenetic signal in species abundance and different topologies of the phylogenetic tree. Replacing phylogenetic distance by functional distance allows for application of the k(d)(r) to estimate spatial correlations in functional community structure. Thus, the k(d)(r) allows trait and phylogenetic structure to be analysed in the same framework. The phylogenetic mark correlation function is a powerful and accurate tool for revealing scale-dependent phylogenetic/functional footprints in community assemblages and allows ecologists to keep up with the increasingly available data of fully stem-mapped plots, functional traits and community phylogenies
    corecore